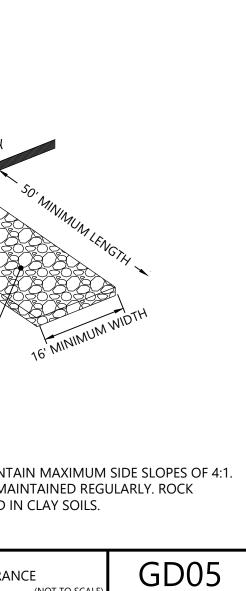


Image: DN-03		MULTI-PIPE							
DESING TO THE LANDER WHEN AND ALL SUBJECT STATES PASSAR FORWARD SUBJECT STATES BIRAP PASSAR FORWARD SUBJECT STATES BIRAP PASSAR FORWARD SUBJECT STATES BIRAP S OF CONSTRUCTION AND DURATION TO CONSTRUCT DI SUBJECT STATES S OF CONSTRUCTION AND DURATION TO CONSTRUCT DI SUBJECT STATES S OF CONSTRUCTION AND DURATION TO CONSTRUCT DI SUBJECT STATES S OF CONSTRUCTION AND DURATION OF STATES S OF CONSTRUCTION TRAFFIC ADDITIONAL MAINTENANCE OF REPARS MOTION OF STATES S OF CONSTRUCTION TRAFFIC ADDITIONAL MAINTENANCE OF REPARS MOTION OF STATES S OF CONSTRUCTION TRAFFIC ADDITIONAL MAINTENANCE OF REPARS MOTION OF STATES S OF CONSTRUCTION TRAFFIC ADDITIONAL MAINTENANCE OF REPARS MOTION OF S OF CONSTRUCTION TRAFFIC ADDITIONAL MAINTENANCE OF REPARS MOTION OF S OF CONSTRUCTION TRAFFIC ADDITIONAL MAINTENANCE OF REPARS MOTION OF S OF CONSTRUCTION TRAFFIC ADDITIONAL MAINTENANCE OF S OF		NOT TO SCALE							
SLOPES MAY REQUIRE MODIFICATION TO CONSTRUCT THE ACCESS ROAD THROUGH THE CHANNEL TO MEET OF CONSTRUCTION AND DEVYERY VENCES. APPROVED DEVYERY VENC		STANDARD ARM	DRESSING TO BETWEEN RIF PASSABLE DF RIPRAP MIRAFI HP27 OR APPROVE COMPACTED	O FILL SURFACE VOIDS PRAP AND PRODUCE A RIVING SURFACE 70 GEOTEXTILE ED EQUAL		50' F	RADIUS (TYF		ADWA
NOTESEE NOTES NSET NOTES NSET NOTES NOTE	OF CONSTRUCTION AND AD SHALL CROSS THE CHA CCESS ROAD SURFACE SH D WITHOUT PONDING UP ACE SHALL EXTEND THRO F THE CHANNEL, UNLESS O MENT CONTROL MAY CON ETAIL FOR INSTALLATION IRBED GROUND IN ACCOR BE INSTALLED DURING TH	DELIVERY VEHICLES. IANNEL AS CLOSE TO F HALL BE AT AN ELEVAT PSTREAM OF ROAD OF OUGH THE CHANNEL E OTHERWISE NOTED. NSIST OF SILT FENCE, REQUIREMENTS. RDANCE WITH THE NF HE PROJECT RESTORA	PERPENDICULAR AS FION THAT ALLOWS R ON THE ROAD SUF BOTTOM AND UP TH FIBERLOGS, WOOD PDES PERMIT. TION PHASE. IF INST	POSSIBLE. WATER TO FLOW THROU RFACE. 1E CHANNEL SIDE SLOPE MULCH BERMS, OR TOP: TALLED DURING CONSTE	JGH THE CHANNEL S TO THE OBSERVED SOIL BERMS. REFER TO RUCTION, MONITOR	MIRAFI APPROV NOTES: ROCK C ROCK E	HP270 GEO ED EQUAL (CONSTRUCT	TEXTILE OR (AS NEEDED) 12" MINIMUM DEPTH NO.2 STON NO.2 STON	IE
NSET NOTES: 1. REFER TO CONSTRUCTION SPECIFICATIONS, AGGREGATE REQUIREMENTS, AND TESTING REQUIREMENTS. 1. REFER TO CONSTRUCTION SPECIFICATIONS, AGGREGATE REQUIREMENTS, AND TESTING REQUIREMENTS. 2. STRUCTURAL SECTIONS SHOWN ARE THE MINIMUM THICKNESS DURING NORMAL FIELD CONDITIONS. IN LEWS WAY NEED TO BE INCREASED ON ACTUAL FIELD CONDITIONS AT THE TIME OF CONSTRUCTION. CONDITIONS INCLUDE, BUT ARE NOT LIMITED TO, CONSTRUCTION DURING UNUSUALLY WET PERIODS, IN LOW/WET AREAS OR SOFT SOLS.									
 REFER TO CONSTRUCTION SPECIFICATIONS, AGGREGATE REQUIREMENTS, AND TESTING REQUIREMENTS. STRUCTURAL SECTIONS SHOWN ARE THE MINIMUM THICKNESS DURING NORMAL FIELD CONDITIONS. THE SECTIONS MAY NEED TO BE INCREASED BASED ON ACTUAL FIELD CONDITIONS AT THE TIME OF CONSTRUCTION. CONDITIONS INCLUDE, BUT ARE NOT LIMITED TO, CONSTRUCTION DURING UNUSUALLY WET PERIODS, IN LOW/WET AREAS OR SOFT SOILS. 				NOT		Westwood		ROCK CONSTRUCTIC	N ENT
RD-05 Westwood STRUCTURAL CROSS SECTIONS SS-02			GEOTI COMP	DOT AB1 AGGREGATE EXTILE FABRIC PACTED SUBGRADE	TO SCALE	- 3" AGGREGAT	SUBGRADE		IN ENT

Westwood Phone (608) 821-6600 8401 Greenway Blvd., Suite 400 Middleton, WI 53562

westwoodps.com


Westwood Professional Services, Inc.

PREPARED FOR:

FREE STATE SOLAR PROJECT, LLC.

422 Admiral Blvd, Kansas City, MO 64106

RE	VISIONS:			
#	DATE	COMMENT	ву снк	APR
A	08/14/23	Permitting Site Plans	SJM EFE	RJG
В	11/02/23	Permitting Site Plans	SJM EFE	RJG
C	11/10/23	Permitting Site Plans	CRS EFE	RJG
D	11/13/23	Permitting Site Plans	CRS EFE	RJG

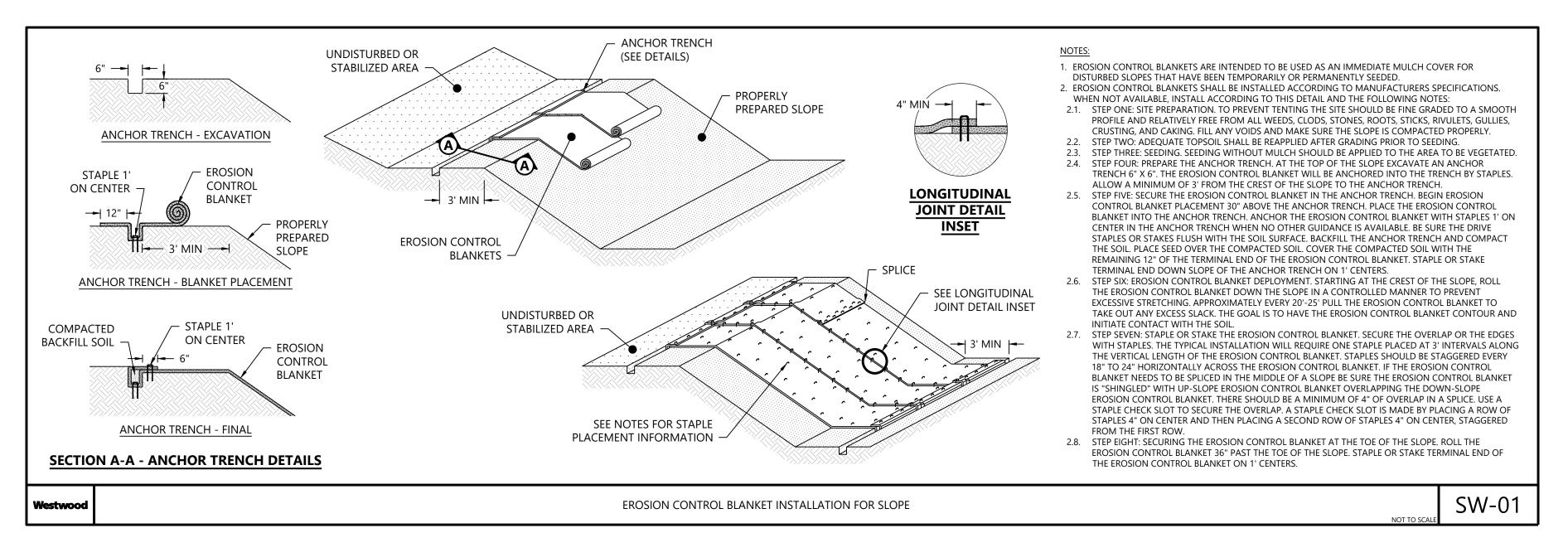
(NOT TO SCALE

Kansas Sky **Energy Center**

Douglas County, Kansas

Typical Details

FOR CONDITIONAL USE PERMIT


DATE:

11/13/2023

SHEET:

C500

REV: D

AREA/PROJECT SITE

24" MIN / /

WRAP ENDS UPSLOPE TO

CONTAIN RUNOFF FROM

STAKING TO -

SECURE LOG

PUNCTURE

MIN 12"

EMBEDDED

WITHOUT

CONSTRUCTION AREA

– 1" MIN

C n.

- FIBER LOG

- 24"

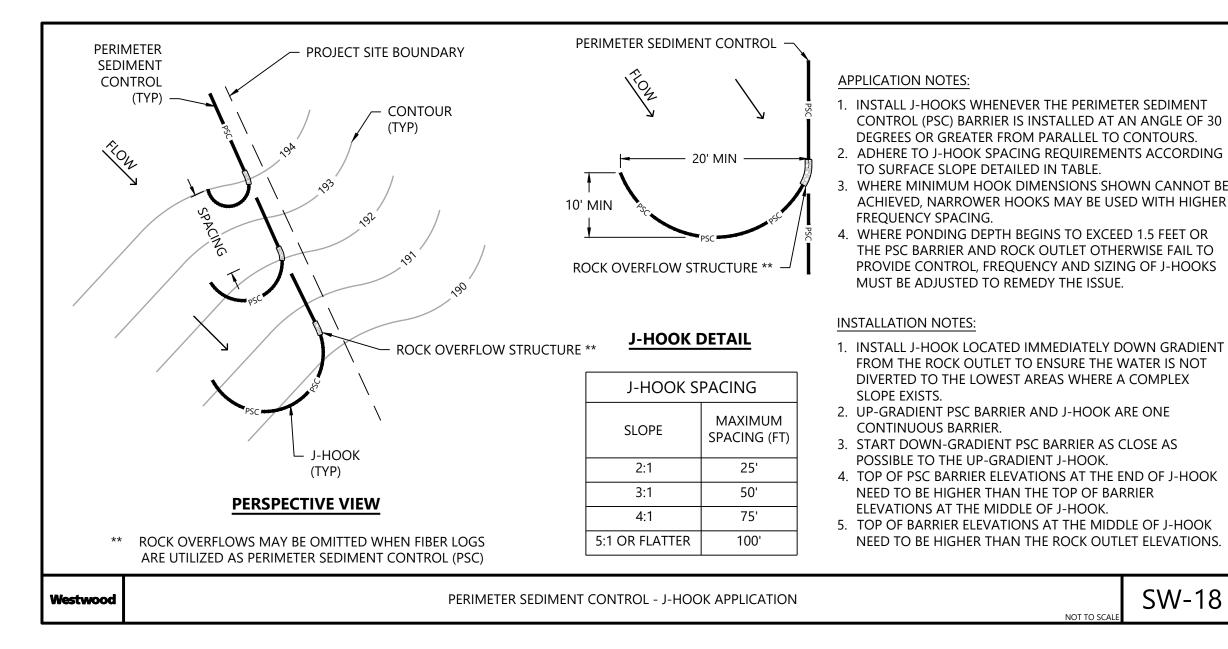
STAKES

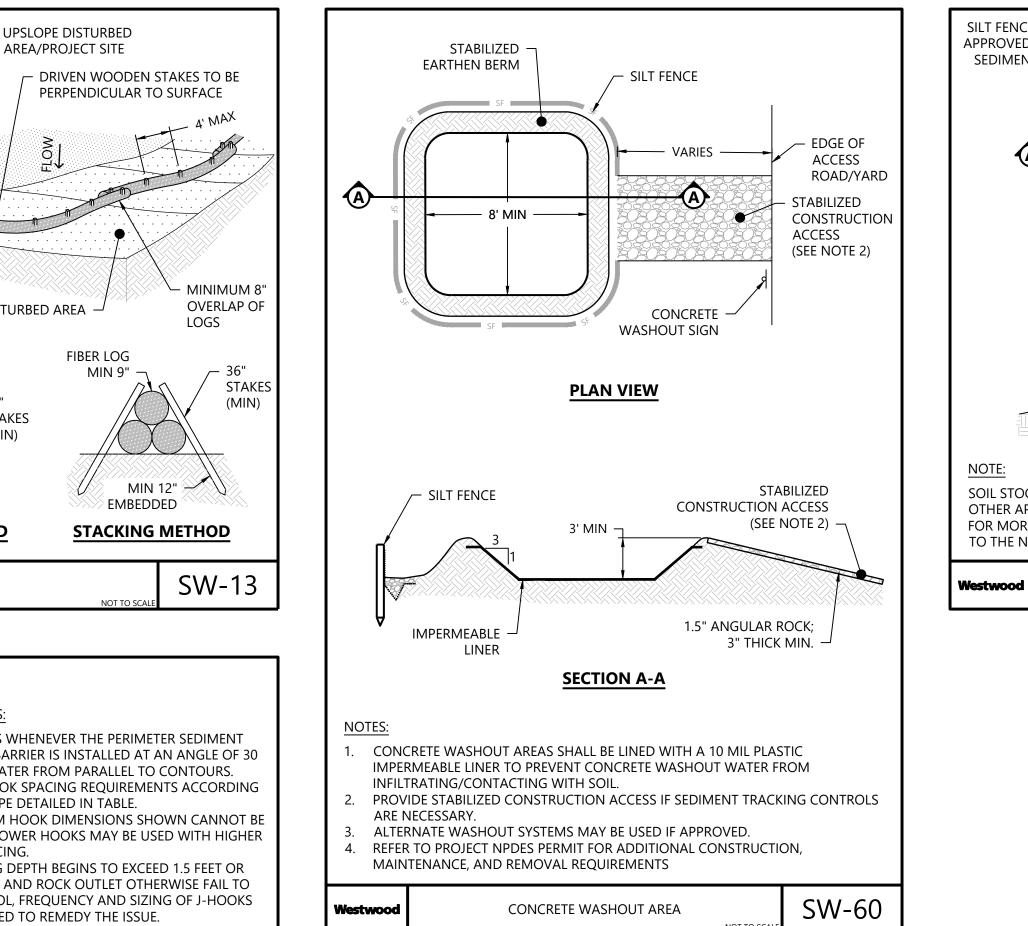
(MIN)

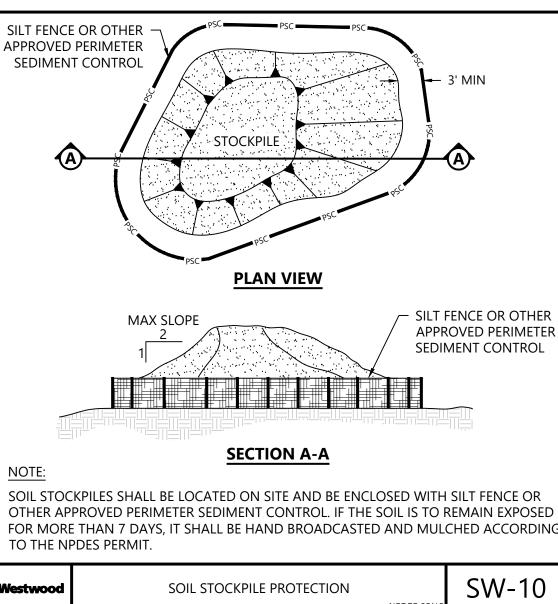
MIN 9"

NO PUNCTURE METHOD

UNDISTURBED AREA


FIBER LOG


MIN



- 1. FIBER LOGS SHALL BE INSTALLED PRIOR TO UPSLOPE DISTURBANCE ACTIVITIES COMMENCE. 2. FIBER LOGS SHALL BE PREFABRICATED AND MADE FROM CERTIFIED STRAW, WOOD, OR COCONUT FIBER MATERIAL BOUND INTO A TIGHT TUBULAR LOG BY NETTING. USE A 9" DIA. LOG MINIMUM. 3. TRENCHES SHALL BE CREATED ALONG THE SLOPE OF THE PERIMETER. THE TRENCH DEPTH SHOULD BE
- 1/4 TO 1/3 OF THE THICKNESS OF THE LOG, AND THE WIDTH SHOULD EQUAL THE LOG DIAMETER, IN ORDER TO PROVIDE AREA TO BACKFILL THE TRENCH. 4. STAKE FIBER LOGS INTO THE TRENCH. DRIVE STAKES AT THE END OF EACH FIBER LOG AND SPACED 4
- FEET MAXIMUM ON CENTER. USE HARD WOOD STAKES WITH NOMINAL CLASSIFICATION OF AT LEAST 1" BY 1" AND A MINIMUM LENGTH OF 24". STAKES SHALL BE EMBEDDED A MINIMUM DEPTH OF 12". 5. LOGS SHALL BE INSTALLED PERPENDICULAR TO WATER MOVEMENT, AND PARALLEL TO THE SLOPE CONTOUR.
- 6. TURN THE ENDS OF THE FIBER LOGS UP SLOPE TO PREVENT RUNOFF FROM GOING AROUND THE LOG. THE UPSLOPE POINT SHOULD BE A MINIMUM 12" HIGHER IN ELEVATION THAN THE LOW POINT. 7. IF MORE THAN ONE FIBER LOG IS PLACED IN A ROW, THE LOGS SHOULD BE OVERLAPPED A MINIMUM
- OF 8 INCHES, NOT ABUTTED. 8. FIBER LOGS ENCASED WITH PLASTIC NETTING ARE USED FOR A TEMPORARY APPLICATION ONLY AND SHOULD BE REMOVED FOLLOWING STABILIZATION. FIBER LOGS USED IN A PERMANENT APPLICATION
- SHALL BE ENCASED WITH A BIODEGRADABLE MATERIAL AND MAY BE LEFT IN. 9. TEMPORARY INSTALLATIONS SHOULD ONLY BE REMOVED WHEN UP GRADIENT AREAS ARE STABILIZED PER GENERAL PERMIT REQUIREMENTS, AND/OR POLLUTANT SOURCES NO LONGER PRESENT A HAZARD. BUT, THEY SHOULD ALSO BE REMOVED BEFORE VEGETATION BECOMES TOO MATURE SO THAT THE REMOVAL PROCESS DOES NOT DISTURB MORE SOIL AND VEGETATION THAN IS NECESSARY
- 10. FIBER LOGS MUST BE INSPECTED IN ACCORDANCE WITH GENERAL PERMIT REQUIREMENTS FOR THE ASSOCIATED PROJECT TYPE AND RISK LEVEL. . REPAIR OR REPLACE SPLIT, TORN, UNRAVELING, OR SLUMPING FIBER LOGS.
- 2. SEDIMENT THAT ACCUMULATES UPSLOPE OF THE BMP SHOULD BE PERIODICALLY REMOVED IN ORDER TO MAINTAIN BMP EFFECTIVENESS. REFER TO CONSTRUCTION GENERAL PERMIT FOR SEDIMENT ACCUMULATION MAINTENANCE INTERVALS.
- 3. RILL, UNDERMINING, AND/OR GULLIES MAY BEGIN TO FORM FOLLOWING MAJOR STORM EVENTS WHERE RUNOFF HAS OVERTOPPED THE FIBER LOGS. THESE RILLS OR GULLIES SHOULD BE PROMPTLY REPAIRED.

PERIMETER SEDIMENT CONTROL - FIBER LOGS Westwood

SW-18

Phone (608) 821-6600 Middleton, WI 53562

westwoodps.com

Westwood Professional Services, Inc.

PREPARED FOR:

FREE STATE SOLAR PROJECT, LLC.

422 Admiral Blvd, Kansas City, MO 64106

RE	VISIONS:				
#	DATE	COMMENT	BY	СНК	APR
A	08/14/23	Permitting Site Plans	SJM	EFE	RJG
В	11/02/23	Permitting Site Plans	SJM	EFE	RJG
C	11/10/23	Permitting Site Plans	CRS	EFE	RJG
D	11/13/23	Permitting Site Plans	CRS	EFE	RJG

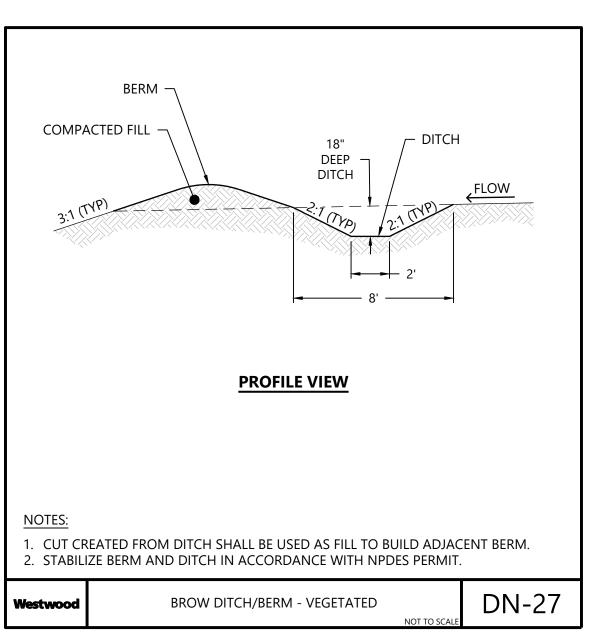
TION NOT TO SCALE	SW-10

Kansas Sky **Energy Center**

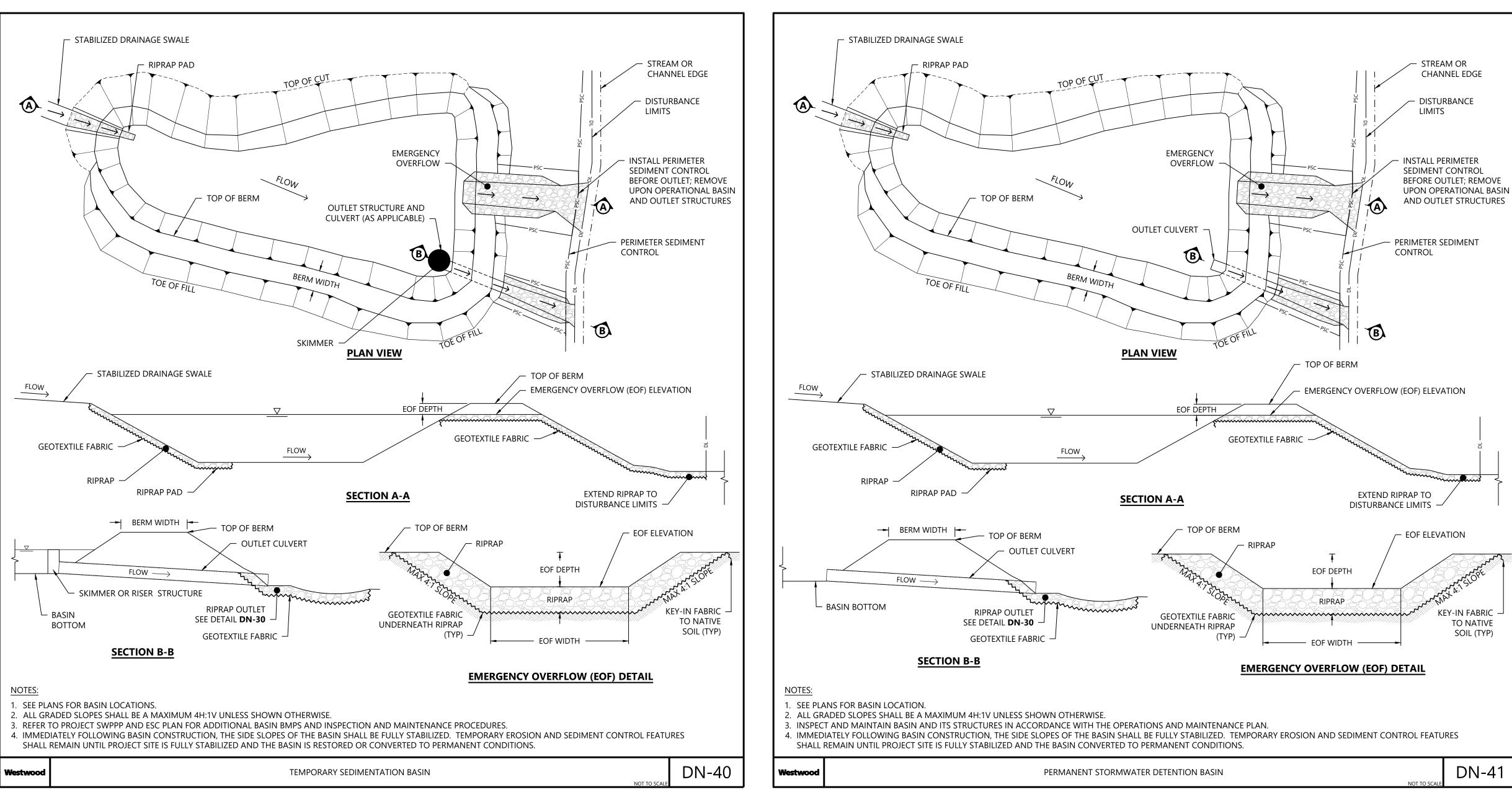
Douglas County, Kansas

Typical Details

FOR CONDITIONAL USE PERMIT


DATE:

11/13/2023


SHEET

C501

REV:

westwoodps.com

Westwood Professional Services, Inc.

PREPARED FOR:

FREE STATE SOLAR PROJECT, LLC.

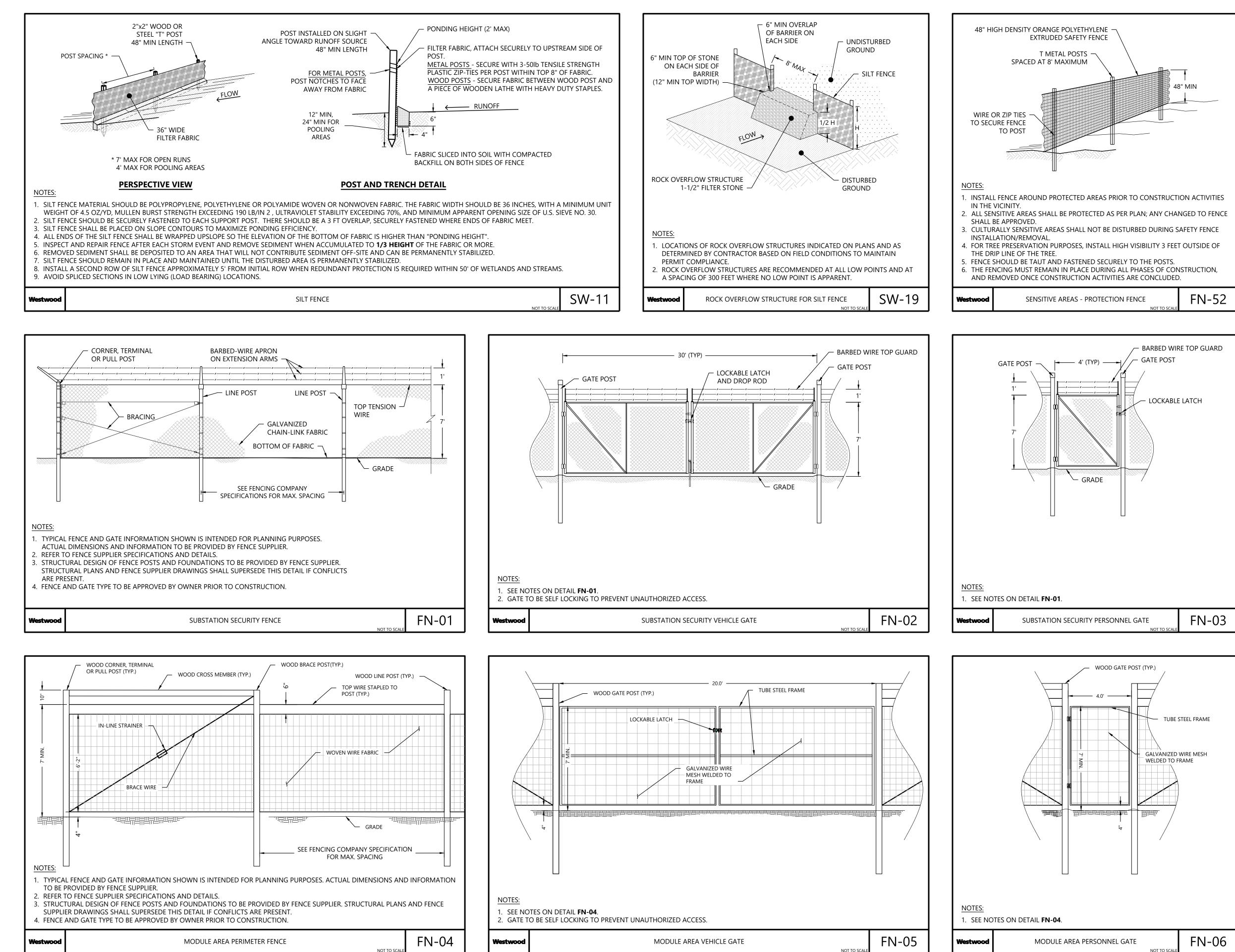
422 Admiral Blvd, Kansas City, MO 64106

RE	VISIONS:				
#	DATE	COMMENT	BY	СНК	APR
A	08/14/23	Permitting Site Plans	SJM	EFE	RJG
В	11/02/23	Permitting Site Plans	SJM	EFE	RJG
C	11/10/23	Permitting Site Plans	CRS	EFE	RJG
D	11/13/23	Permitting Site Plans	CRS	EFE	RJG

Kansas Sky Energy Center Douglas County, Kansas

Typical Details

FOR CONDITIONAL USE PERMIT


DATE:

11/13/2023

SHEET:

C502

REV: D

westwoodps.com

Westwood Professional Services, Inc.

PREPARED FOR:

FREE STATE SOLAR PROJECT, LLC.

422 Admiral Blvd, Kansas City, MO 64106

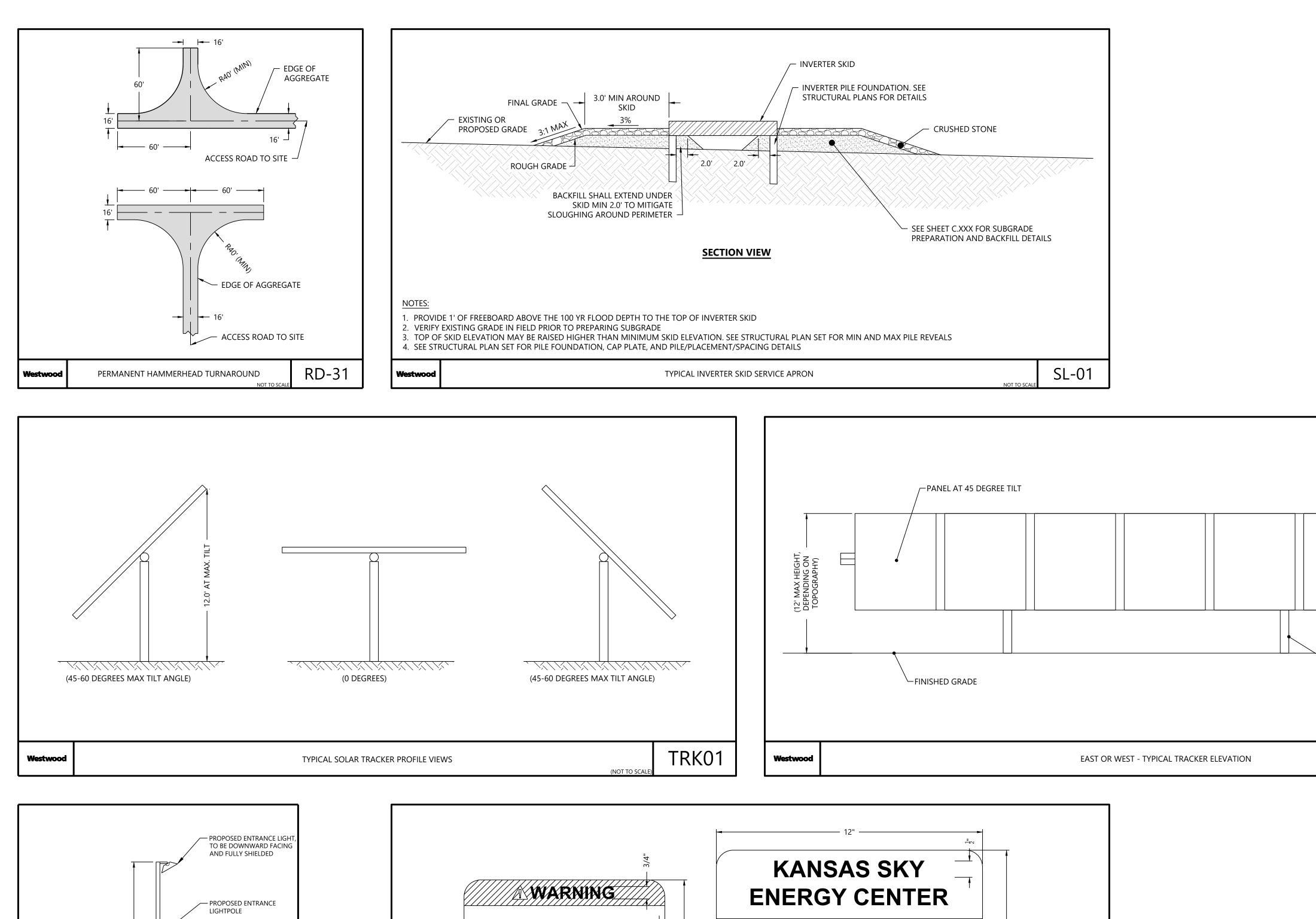
RE	VISIONS:				
#	DATE	COMMENT	BY	СНК	APR
A	08/14/23	Permitting Site Plans	SJM	EFE	RJG
В	11/02/23	Permitting Site Plans	SJM	EFE	RJG
C	11/10/23	Permitting Site Plans	CRS	EFE	RJG
D	11/13/23	Permitting Site Plans	CRS	EFE	RJG

Kansas Sky **Energy Center**

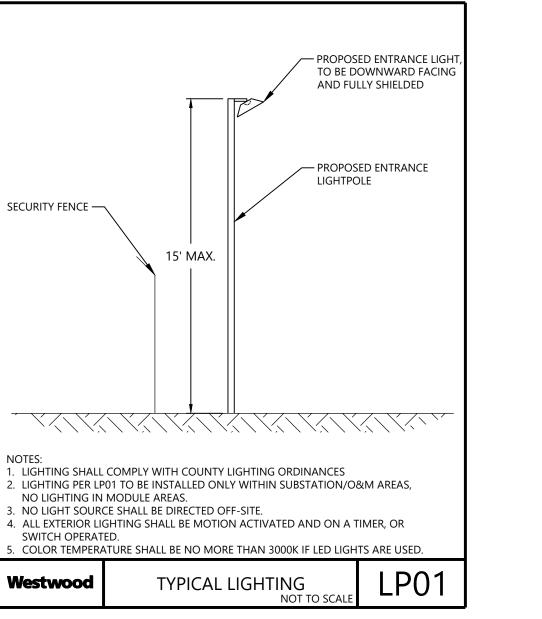
Douglas County, Kansas

Typical Details

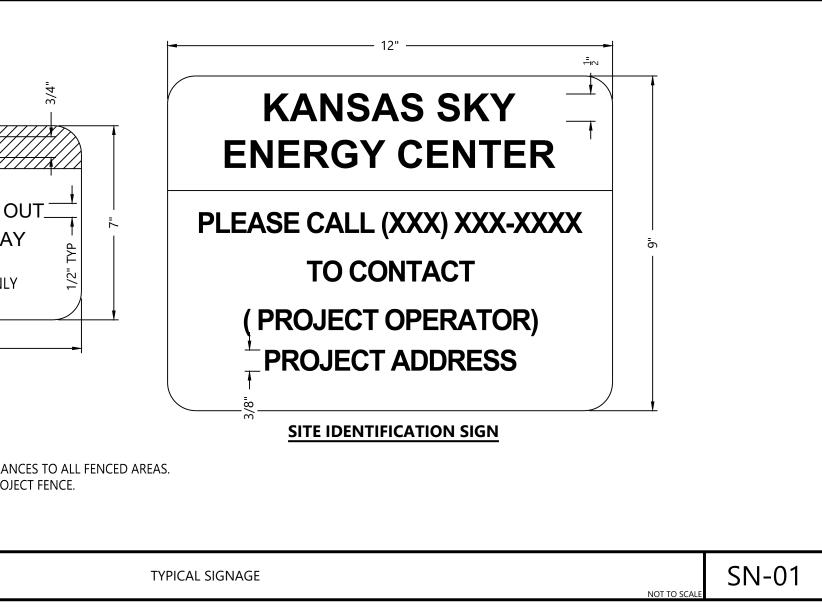
FOR CONDITIONAL USE PERMIT


DATE:

11/13/2023


REV:

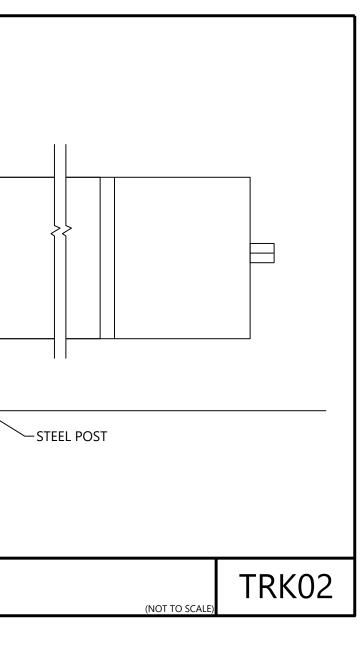
SHEET


C503

HIGH VOLTAGE - KEEP O PHOTOVOLTAIC ARRA AUTHORIZED PERSONNEL ONL 12"
CATION SIGNS SHALL BE PLACES AT ENTRA SHALL BE PLACES EVERY 500' ALONG PRO OT BE LIT.

Phone (608) 821-6600 8401 Greenway Blvd., Suite 400 Middleton, WI 53562

westwoodps.com


Westwood Professional Services, Inc.

PREPARED FOR:

FREE STATE SOLAR PROJECT, LLC.

422 Admiral Blvd, Kansas City, MO 64106

RE	VISIONS:				
#	DATE	COMMENT	BY	СНК	APR
A	08/14/23	Permitting Site Plans	SJM	EFE	RJG
В	11/02/23	Permitting Site Plans	SJM	EFE	RJG
С	11/10/23	Permitting Site Plans	CRS	EFE	RJG
D	11/13/23	Permitting Site Plans	CRS	EFE	RJG

Kansas Sky Energy Center

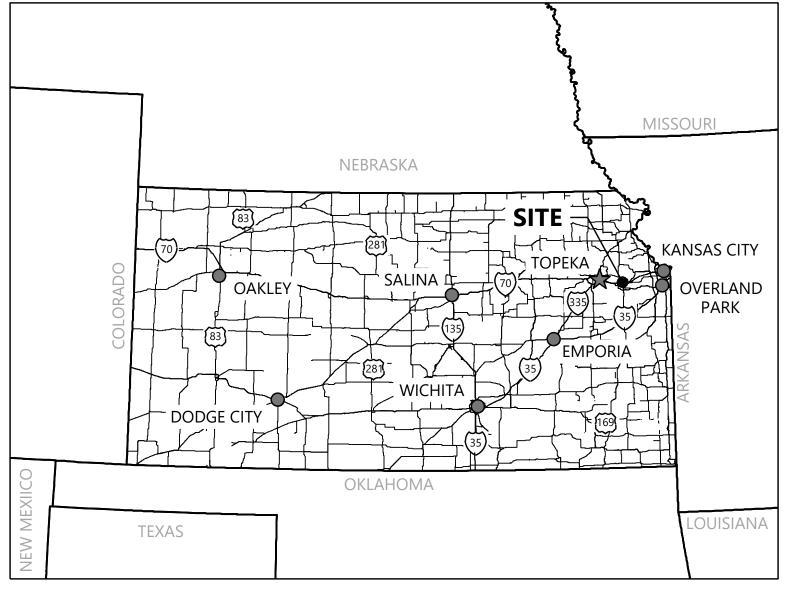
Douglas County, Kansas

Typical Details

FOR CONDITIONAL USE PERMIT

DATE:

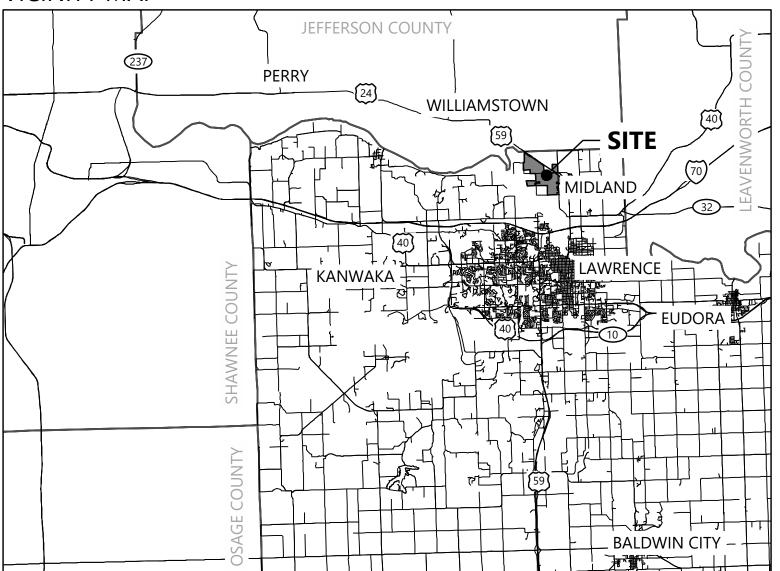
11/13/2023


SHEET:

C504

REV:

Kansas Sky Energy Center Douglas County, Kansas Project Number: 09100007


REGIONAL MAP

Sheet List Table				
SHEET NUMBER	SHEET TITLE			
S000	Cover			
S100 PV Pile Foundation Detail				
S200	Inverter Foundation Details			

Structural Construction Plans

VICINITY MAP

CONTACT INFORMATION						
	COMPANY	CONTACT	PHONE	ADDRESS		
PROJECT OWNER	FREE STATE SOLAR PROJECT, LLC	BRIANNA BACA	(531) 203-0181	422 ADMIRAL BLVD., KANSAS CITY, MO 64106		
PROJECT DEVELOPER	FREE STATE SOLAR PROJECT, LLC	BRIANNA BACA	(531) 203-0181	422 ADMIRAL BLVD., KANSAS CITY, MO 64106		
PROJECT OPERATOR	FREE STATE SOLAR PROJECT, LLC	BRIANNA BACA	(531) 203-0181	422 ADMIRAL BLVD., KANSAS CITY, MO 64106		
PROJECT MANAGER	WESTWOOD PROFESSIONAL SERVICES	LEVI MITCHELL	(608) 621-6602	8401 GREENWAY BLVD., SUITE 400 MIDDLETON, WI 53562		
PROJECT CIVIL ENGINEER	WESTWOOD PROFESSIONAL SERVICES	ERIK ELLIOTT	(984) 202-7498	8401 GREENWAY BLVD., SUITE 400 MIDDLETON, WI 53562		

Know what's below. Call before you dig.

Middleton, WI 5356 Westwood Professional Services, Ir

FREE STATE SOLAR PROJECT, LLC.

422 Admiral Blvd, Kansas City, MO 64106

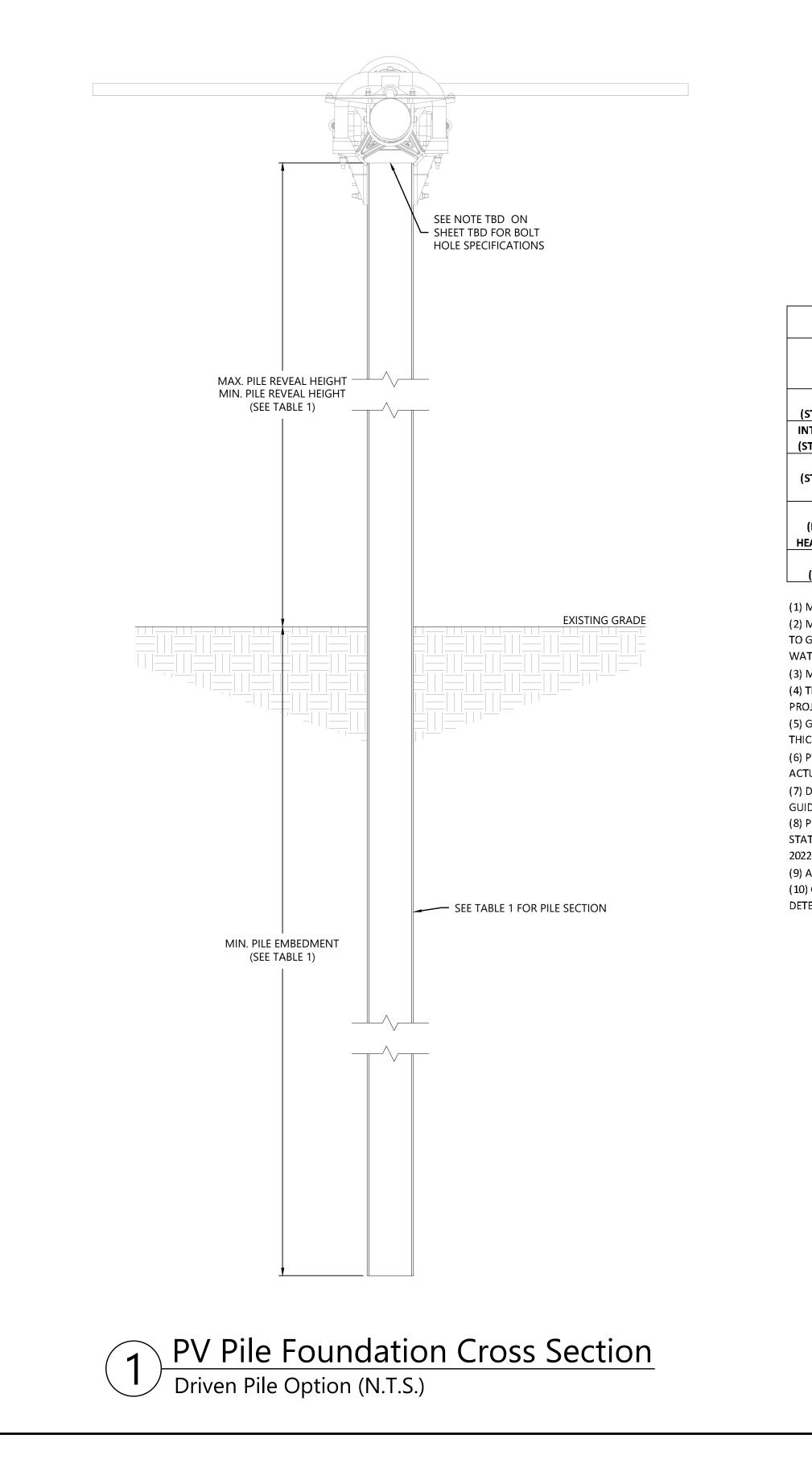
RE	VISIONS:				
#	DATE	COMMENT	BY	СНК А	APR
A	04/28/2023	30% REVIEW SUBMITTAL	JTZ	REG	
В	05/24/2023	30% REVIEW SUBMITTAL	JTZ	REG	

Kansas Sky **Energy Center**

Douglas County, Kansas

Cover

NOT FOR CONSTRUCTION


DATE:

05/24/2023

S000

SHEET

B

TABLE 1 - PV RACKING FOUNDATION SPECIFICATIONS						
PILE TYPE	SECTION ⁽⁵⁾	MINIMUM EMBEDMENT ^(1,3) (FT)	MINIMUM REVEAL HEIGHT ⁽²⁾ (FT)	MAXIMUM REVEAL HEIGHT ⁽³⁾ (FT)		
INTERIOR ARRAY STANDARD ARRAY PIER)	W6x12	8.50	4.14	5.00		
ITERIOR & EDGE MOTOR TANDARD MOTOR PIER)	W6x20	8.50	4.14	5.00		
EDGE ARRAY STANDARD ARRAY PIER, EDGE)	W6x16	9.00	4.14	5.00		
EXTERIOR ARRAY (HEAVY ARRAY PIER & EAVY ARRAY PIER, EDGE)	W6X16	9.50	4.14	5.00		
EXTERIOR MOTOR (HEAVY MOTOR PIER)	W6x20	9.50	4.14	5.00		

(1) MINIMUM EMBEDMENT CONTROLLED BY LATERAL STABILITY AND ACCOUNTS FOR UP TO 6" OF SCOUR. (2) MINIMUM REVEAL HEIGHT PROVIDES 18" OF CLEARANCE FROM EDGE OF MODULE AT 52° MAXIMUM TILT TO GRADE. ADDITIONAL REVEAL HEIGHT ME BE REQUIRED TO PROVIDE ADEQUATE FREEBOARD TO FLOOD WATER AND SNOW DEPTH AS WELL AS CAB CLEARANCES.

(3) MINIMUM EMBEDMENT AND MAXIMUM REVEAL HEIGHT ACCOUNTS FOR 6" OF SCOUR. (4) THIS TABLE IS INTENDED TO PROVIDE A SUMMARY OF THE PRELIMINARY FOUNDATIONS USED ON THIS PROJECT. THIS TABLE SHOULD NOT BE USE FOR FINAL PILE PROCUREMENT OR QUALITY CONTROL. (5) GALVANIZE ALL DRIVEN STEEL FOUNDATIONS PER ASTM A123 WITH A MINIMUM GALVANIZATION

THICKNESS OF 5.0 MILS. (6) PV DESIGN TABLE 1 IS PRELIMINARY AND SUBJECT TO CHANGE PENDING MORE DETAILED ANALYSIS.

ACTUAL DESIGN DETAILS WILL BE DETERMINED DURING THE FINAL DESIGN PHASE. (7) DESIGN ASSUMES DOES NOT ACCOUNT FOR UPLIFT FORCES FROM FROST/SWELL POTENTIAL AS NO

GUIDANCE WAS PROVIDED IN PRELIMINARY GEOTECHNICAL REPORT. (8) PRELIMINARY GEOTECH REPORT REFERENCED: PRELIMINARY GEOTECHNICAL ENGINEERING STUDY, FREE STATE SOLAR PROJECT, DOUGLAS COUNTY, KANSAS, DATED SEPTEMBER 1, 2022 BY KLEINFELDER, P# 20225756.001A

(9) ADDITIONAL OPPORTUNITIES TO OPTIMIZE DESIGN WILL BE INVESTIGATED IN FINAL DESIGN. (10) CORROSION CONSIDERED IN DESIGN WAS ESTIMATED AND FINAL CORROSION RATES SHALL BE DETERMINED BY A QUALIFIED CORROSION ANALYSIS.

TABLE	2 - KANSAS SKY 30% SOLAR BASIS OF D	ESIGN (PRELIMINARY)
	GENERAL STRUCTURAL DESIGN	CRITERIA
CRITERIA	VALUE	NOTES
BUILDING CODE	IBC 2018	DOUGLAS COUNTY ADOPTED BUILDING CODE + AMENDMENTS
DESIGN LIFE	35 YEARS PLANT	ΕΧΗΙΒΙΤ Α
	(40 YEARS FOR PILES)	a soonaasteoteot ja jaalee
RISK CATEGORY	I	ASCE 7-16
WIND SPEED	103 MPH	ASCE 7-16
SNOW LOAD	20 PSF	ASCE 7-16
EQUIPMENT MANUFACTURER(S)	PV RACKING: NEXTRACKER	
FOUDATION TYPE(S)	PV RACKING: DRIVEN PILE	
	STEEL PILE DESIGN CRITER	
CRITERIA	VALUE	NOTES
COLUMNS PER RACK	14	BASED ON NEXTRACKER TOPL
MINIMUM PILE REVEAL HEIGHT	4.14 FT	ASSUMED, BASED ON NEXTRACKER DESIGN GUIDE
MAXIMUM PILE REVEAL HEIGHT	5 FT	ASSUMED, REVEAL FROM NEXTRACKER TOPL
MAXIMUM TORQUE TUBE HEIGHT	5.75 FT	ASSUMED, NEXTRACKER TOPL
CAB SYSTEM	YES	ASSUMED
	5°	ASSUMED FOR 30% DESIGN. BASED ON
MAXIMUM N-S SLOPE	5	DOCUMENT FROM A SIMILAR PROJECT.
STEEL SECTIONS	ASTM A992	
CORROSION PROTECTION	ASTM A123 MINIMUM	
	ZINC: 0.54 MIL/YR	
CORROSION RATE	STEEL: 1.71 MIL/YR	PRELIMINARY, NOT FOR FINAL DESIGN
	CLEARANCE DESIGN CRITE	RIA
CRITERIA	VALUE	NOTES
FLOOD DEPTH (100 YR.)	TBD	PENDING HYDROLOGY ANALYSIS
FLOOD SCOUR DEPTH	6"	ASSUMED FOR 30%, PENDING HYDRO REPORT
SNOW DEPTH	ТВД	
	6" MODULE (WITH FLOOD STOW	
	ABILITY)	
FREEBOARD	12" MODULE (WITH NO FLOOD STOW	PER EXHIBIT A
	ABILITY)	
	12" MODULE TO GRADE (SITE ISN'T	
	VEGETATED)	
CLEARANCE	18" MODULE TO GRADE (SITE IS	PER EXHIBIT A
CLEARANCE	VEGETATED)	
	12" CABLE TO GRADE	
	GEOTECHNICAL DESIGN CRIT	FRIA
CRITERIA	VALUE	NOTES
SKIN FRICTION	VALOL	PRELIMINARY GEOTECH REPORT, SEE NOTE 8 UNDER
	350 PSF	TABLE 1
ULTIMATE) END BEARING		
(ULTIMATE)	3500 PSF	PRELIMINARY GEOTECH REPORT, SEE NOTE 8 UNDE TABLE 1
(OETIMATE)	MODIFIED STILL CLAY W/O FREE	
	WATER	
	EFFECTIVE UNIT WEIGHT (PCF): 105	
LPILE SOIL MODEL	COHESION, (PSF): 1,000	PRELIMINARY GEOTECH REPORT, SEE NOTE 8 UNDE
EFTEL SOLE MODEL	STRAIN FACTOR: DEFAULT	TABLE 1
	INITIAL TANGENT MODULUS, K (PCI):	
	DEFAULT	
FROST DEPTH	TBD	PENDING GEOTECH GUIDANCE
ADFREEZE PRESSURE	TBD	PENDING GEOTECH GUIDANCE
DEPTH OF SOIL IGNORED	AXIAL: 1 FT	PRELIMINARY GEOTECH REPORT, SEE NOTE 8 UNDER
	LATERAL: 0.5 FT	TABLE 1

PREPARED FOR:

FREE STATE SOLAR PROJECT, LLC.

422 Admiral Blvd, Kansas City, MO 64106

RE	VISIONS:			
#	DATE	COMMENT	BY CH	K APR
A	04/28/2023	30% REVIEW SUBMITTAL	JTZ RE	G
В	05/24/2023	30% REVIEW SUBMITTAL	JTZ RE	G
<u> </u>	03/24/2023	SO/GREVIEW SOBWITTAL	512 112	0

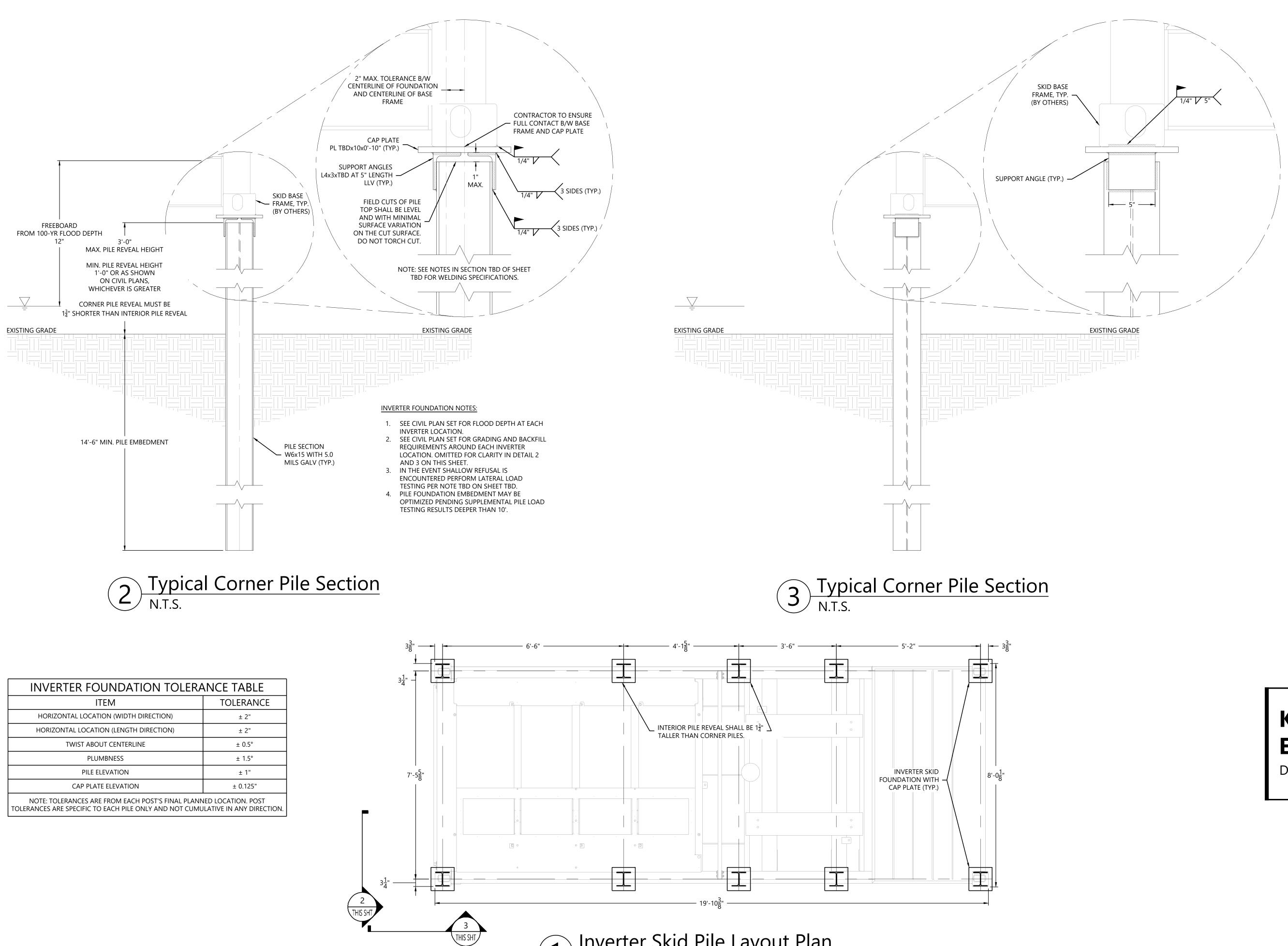
Kansas Sky Energy Center

Douglas County, Kansas

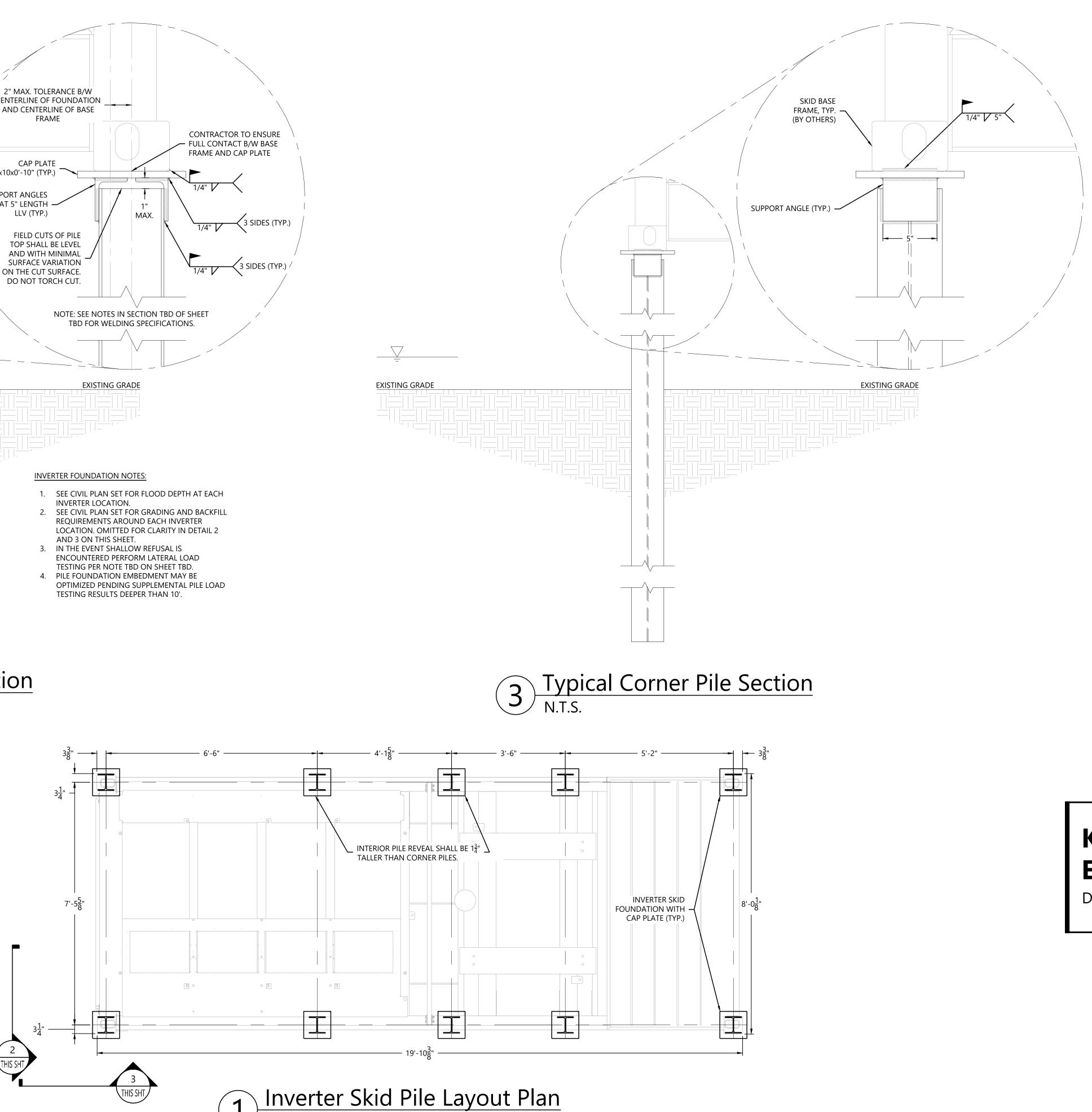
PV Pile Foundation Details

NOT FOR CONSTRUCTION

DATE:


05/24/2023

SHEET:


S100

REV:

В

INVERTER FOUNDATION TOLERA	ANCE TABLE
ITEM	TOLERANCE
HORIZONTAL LOCATION (WIDTH DIRECTION)	± 2"
HORIZONTAL LOCATION (LENGTH DIRECTION)	± 2"
TWIST ABOUT CENTERLINE	± 0.5°
PLUMBNESS	± 1.5°
PILE ELEVATION	± 1"
CAP PLATE ELEVATION	± 0.125"
NOTE: TOLERANCES ARE FROM EACH POST'S FINAL PLANN TOLERANCES ARE SPECIFIC TO EACH PILE ONLY AND NOT CUMU	

N.T.S.

PREPARED FOR:

FREE STATE SOLAR PROJECT, LLC.

422 Admiral Blvd, Kansas City, MO 64106

REVISIO	NS:			
<u># D</u>	ATE	COMMENT	BY	CHK APR
A 04/28	3/2023	30% REVIEW SUBMITTAL	JTZ	REG
B 05/24	4/2023	30% REVIEW SUBMITTAL	JTZ	REG

Kansas Sky **Energy Center**

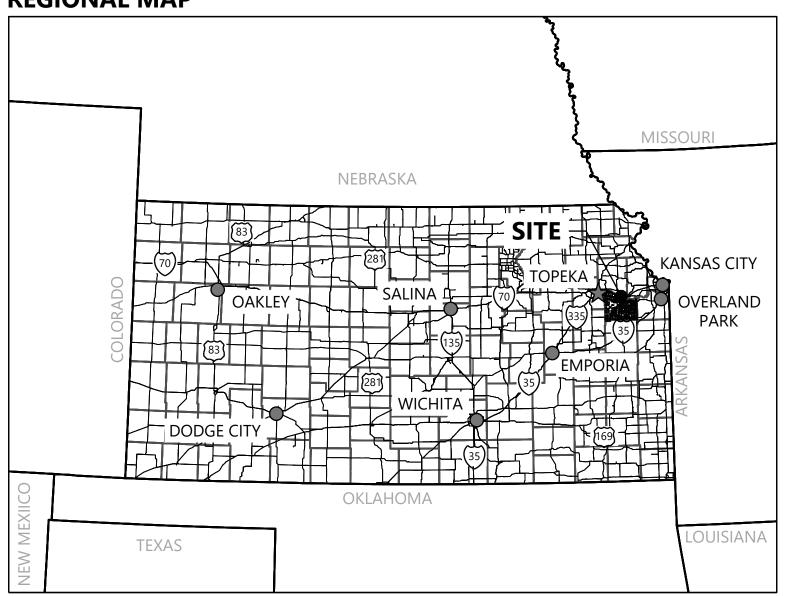
Douglas County, Kansas

Inverter Foundation Details

NOT FOR CONSTRUCTION

DATE:

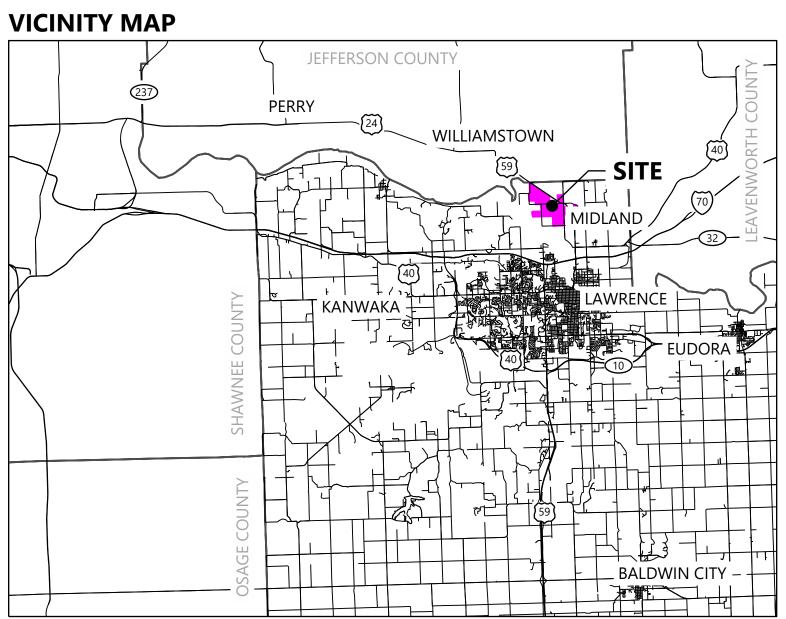
05/24/2023


REV:

В

SHEET:

S200


Kansas Sky Energy Center Douglas County, Kansas

	CONTACT INFORMATION					
	COMPANY	CONTACT	PHONE	ADDRESS		
PROJECT OWNER	FREE STATE SOLAR PROJECT, LLC	BRIANNA BACA	(531) 203-0181	422 ADMIRAL BLVD., KANSAS CITY, MO 64106		
PROJECT DEVELOPER	FREE STATE SOLAR PROJECT, LLC	BRIANNA BACA	(531) 203-0181	422 ADMIRAL BLVD., KANSAS CITY, MO 64106		
PROJECT MANAGER	WESTWOOD PROFESSIONAL SERVICES	RANDY GARDNER	(608) 622-5223	8401 GREENWAY BLVD., SUITE 400 MIDDLETON, WI 53562		
PROJECT ELECTRICAL ENGINEER	WESTWOOD PROFESSIONAL SERVICES	WADE EVANS	(720)-751-2831	10170 CHURCH RANCH WAY, SUITE 201 WESTMINSTER, CO 80021		
PROJECT OPERATOR	FREE STATE SOLAR PROJECT, LLC	BRIANNA BACA	(531) 203-0181	422 ADMIRAL BLVD., KANSAS CITY, MO 64106		

REGIONAL MAP

Electrical Construction Plans

Know what's below. Call before you dig.

Middleton, WI 5356

Westwood Professional Services, Ju

PRFPARED FOR

FREE STATE **SOLAR LLC.**

REPARED FOR PROJECT NUMBER: 091000

RE	VISIONS:			
#	DATE	COMMENT	BY	CHK APR
A	05/22/23	ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
В	06/16/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
С	07/13/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME

Kansas Sky **Energy Center**

Douglas County, Kansas

Electrical Cover Sheet

NOT FOR CONSTRUCTION

DATE:

07/13/2023

E0000

SHEET

011557	Sheet Index	
SHEET NUMBER	SHEET TITLE	LAST REVISION
E0000	Electrical Cover Sheet	С
E0001	Sheet Index	С
E0010	Electrical Notes	С
E0020	Electrical Symbology, Equipment Labeling & Abbreviations	С
E0040	Labels & Markings	С
-	Not Used	-
E0050	Project Design Summary	С
E0300	Overall Site Plan	D
E1000	Overall MVAC Site Plan	D
E1100	MVAC Site Plan	D
E1101	MVAC Site Plan	D
E1102	MVAC Site Plan	D
E1300	MVAC Single Line Diagram - Circuit 1	С
E1301	MVAC Single Line Diagram - Circuit 2	С
E1302	MVAC Single Line Diagram - Circuit 3	С
E1303	MVAC Single Line Diagram - Circuit 4	С
E1304	MVAC Single Line Diagram - Circuit 5	С
E1305	MVAC Single Line Diagram - Circuit 6	С
E1306	MVAC Single Line Diagram - Circuit 7	С
E1307	MVAC Single Line Diagram - Circuit 8	С
E2000	DC Site Plan - Block 3	С
E2002	DC Site Plan - Block 14	С
E2300	Inverter Collection Line Diagram	С
E2301	DC Level II Single Line Diagram	С
E3300	String Wiring Harness Diagram - 15A & 14A	С
E3301	String Wiring Harness Diagram - 13A & 12A	С
E3302	String Wiring Harness Diagram - 10A	С
E6000	Overall Communication Site Plan	D
E6200	Fiber Optic Single Line Diagram	С
E7010	Inverter Details	С
E7011	Junction Box Details	С
E7012	Splice Box Details	С
E7100	DC Electrical Details	С
E7101	DC Electrical Details	С
E7610	Trenching Details	С
E7611	Trenching Details	С
E7661	Overhead Utility Crossing Details	С
E8900	Module Specifications	С
E8901	Inverter Specifications	С

Westwood Professional Services, Inc.

PREPARED FOR:

FREE STATE SOLAR LLC.

PREPARED FOR PROJECT NUMBER: 09100007

RE	VISIONS:			
#	DATE	COMMENT	ΒY	CHK APR
A	05/22/23	ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
В	06/16/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
С	07/13/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
D	08/09/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WME WME

Kansas Sky Energy Center Douglas County, Kansas

Sheet Index

NOT FOR CONSTRUCTION

DATE:

07/13/2023

SHEET:

E0001 C

SECTION 16010 - GENERAL PROVISIONS - ELECTRICAL

- A. The work included under Division 16 shall consist of furnishing labor and materials necessary for the complete installation of lighting, power, and photovoltaic systems shown on the drawings. All work shall be complete and left in operating condition at completion of Contract.
- B. Include minor items that are obviously and reasonably necessary to complete the installation and usually included in similar work. Such items include bolts, nuts, anchors, brackets, sleeves, and minor offsets in conduit, junction boxes, etc
- C. Some equipment and materials provided under other divisions may require composite work crews because of trade jurisdiction. It is the Contractor's or Subcontractor's responsibility to review all Contract Documents to determine where these composite crews are required.
- D. All temporary and permanent permits and licenses required in connection with this Division's work shall be the responsibility of the Contractor awarded that work.
- E. Installation shall meet or exceed current applicable codes, ordinances and regulations in effect at the site. If a Contractor or Subcontractor observes that the Contract Documents are at variance with governing codes and regulations, they shall promptly notify the Engineer in writing, who will respond to such variances in writing. If the Contractor performs work knowing it is not compliant with applicable codes, and does not notify the Engineer, the Contractor shall assume full responsibility and bear all costs attributable to correcting the non-complying work.
- F. The reference to Codes and Standards shall not permit a lower grade of construction where Contract Documents call for workmanship and/or materials in excess of those references.
- G. Where the terms "provide" or "shall be" are used in this Division or on the drawings, they shall be taken to mean "The Contractor shall furnish and install". H. If equipment or materials other than those specified in the design of this project are proposed to
- be used on this project, the Contractor and supplier shall check it for dimensional differences, electrical requirements and any other potential variances. This comparison shall be made for manufacturers specified as well as those proposed prior to requesting approval. The Contractor shall be responsible for any extra costs incurred as a result of Substitutions, including those of other contractors, such as might be due to (but not limited to) different electrical, mechanical and architectural requirements.
- I. Shop Drawings:
- 1. Carefully examine all shop drawings noting capacity, arrangement and physical dimensions and mark the drawings as being reviewed and approved prior to submitting to the Engineer. Where catalog data is submitted which includes items which do not apply to this project, those items shall be clearly marked out or relevant items clearly noted. Any deviations from the documents shall be so noted by the Contractor or equipment supplier. The intent and requirements of the drawings and specifications shall be adhered to at all times and are not waived or superseded in any way by the shop drawing submittal or review.
- 2. Submit a minimum (1) electronic copy of shop drawings for review and approval. Contractor shall retain a final approved copy for incorporation in the Operation and Maintenance Manuals.
- 3. If returned shop drawings are marked "NO EXCEPTIONS TAKEN", no additional submittal is required. If the shop drawing is marked "MAKE CORRECTIONS NOTED", the changes noted on the shop drawings are to be incorporated, with no further resubmittal required. If marked "REVISE AND RESUBMIT", changes noted on the shop drawings are to be made and the drawings resubmitted for review. If marked "REJECTED", the equipment submitted is unacceptable and different equipment or materials need to be submitted.
- J. No asbestos or PCB containing materials of any type shall be used on this Project.
- K. Consult the Contract Drawings and Specifications of all other Divisions and other trades for correlating information and layout work so that it will not interfere with other trades. Verify all dimensions and conditions. If conflicts occur such that resolution is not possible by the affected trades on the job, the Engineer shall be notified and a resolution will be worked out.
- L. Electrical equipment enclosures (switchboards, panelboards, transformers, relay cabinets, systems racks/cabinets, combiner boxes, etc.) shall be vacuumed and wiped clean prior to energizing and again at substantial completion.
- M.Install material and equipment in accordance with Manufacturers' recommendations, instructions, and current N.E.C.A. standards.
- N.Install equipment and materials to provide required access for servicing and maintenance. Coordinate final equipment location with required access panels and doors. Allow ample space for removal of all parts that require replacement or servicing.
- O.Record Drawings: As work progresses, in a neat and legible manner, record all changes or deviations from the contract drawings. Submit Record Drawings to Engineer for review at completion of Work. The Record Drawings will become part of the Operation and Maintenance Manual package submitted to the Owner after the completion of the project.
- SECTION 16050 BASIC MATERIALS AND METHODS
- A. All materials shall be new, as specified or approved, and in original packaging. Catalog numbers specified shall be verified with vendors prior to ordering material.
- B. All materials shall be listed by a NRTL (i.e. UL, ETL, etc.) and have an associated label unless special fabrication of material is required. Special fabricated material shall be fabricated using listed components and procedures.
- C. Where the word "provide" is used, it shall require the electrical subcontractor to furnish and install material complete to a workable system.
- D. All work shall be tested in accordance with industry accepted standards. Before testing, a thorough visual inspection shall be made to detect connection problems, damaged components, poor workmanship, inappropriate overcurrent protection, debris, etc. Testing apparatus shall be certified or demonstrated to be accurate within reasonable limits. Competent personnel familiar with the test equipment shall perform all tests. If testing procedures employed are not satisfactory to the Engineer, outside testing will be done at the electrical subcontractor's expense.
- E. Electrical subcontractor to identify all electrical equipment with engraved 1/4" white letters on black plates. Inscriptions shall indicate the name, voltage, phase, wires, feeder size, feeder source and location of source, and the device number.
- F. All low voltage cables shall be bundled and labeled as to their function within terminal cabinets, wireways and cable trays.
- G. Branch circuitry shall match circuit numbers as shown on the drawings and as scheduled. Any required deviation shall be indicated on the record drawings drawings.

H. All opening into equipment shall be sealed to prevent entry of insects and rodents. SECTION 16110 - RACEWAYS

- A. Construction shall be as per Underwriter's Laboratories Standard UL 870 for wireways, auxiliary gutters and associated fittings.
- B. Wireways shall be painted steel with hinged removable cover, which can be used as either a hinged cover or set screw cover. Shall be fabricated such that the entire length of wireway and fittings permit lay-in wiring application. Cross sectional area shall be 6" x 6" minimum unless otherwise noted. Raintight wireway shall be NEMA 3R construction with gaskets and a corrosion resistant finish.
- C. Where required, provide cable strain relief, grounding connectors, expansion fittings.
- D. Schedule 40 PVC shall be used for all raceways where not restricted by this section or specifically noted otherwise. Schedule 80 PVC shall be used where above ground or transitions where emerging from ground and exposed to physical damage.
- E. PVC conduit used above grade shall be UV resistant type.
- F. Flexible liquid tight conduit shall be used on all motor, moving, and vibrating equipment connections. Use minimum 1/2" size with grounding type fittings and provide grounding conductor.
- G. Conduit shall not be mounted on mechanical or other equipment which vibrates except at connection points.

- H. Installations of underground wiring shall be in trench, duct or conduit or by plowing in place as specified on plans.
- I. Underground raceways or direct burial cables shall be installed to meet the following requirements:
- 1. Spacing between exterior surfaces of underground conduits/cables shall be not less than the following:
- a. 2 inches between communications (copper) conduits/cables
- b. 2 inches between AC conduits/cables operating at not over 1000 volts
- c. 6 inches between a communications conduit/cable and any power conduit/cable (AC or
- DC not over 100V) in the same trench
- DC over 1000V) in the same trench, unless noted otherwise
- e. 6 inches between AC conduits/cables operating at over 1000 volts
- f. 6 inches between AC power conduits/cables and DC power conduits/cables. q. 6 inches between armored fiber optic cable or in metallic conduit and power
- conduits/cables (AC or DC) 2. Where crossing perpendicular, spacing between exterior surface of underground
- conduits/cables shall be not less than the following: a. 6 inches between AC and DC power conduits/cables operating at any voltage.
- b. 12 inches between conduits/cables containing AC and DC power conduits operating at
- any voltage and communications (copper) conduits/cables. J. All underground raceways or wiring when specified in excavated trenches shall have backfill compacted. Refer to compaction requirements in trench compaction details. Backfill immediately around conduits/conductors to be a minimum of 3" native soil free from debris and organic material. Backfill surrounding direct buried cables shall be free of rocks 3/8" or larger, debris and organic material. Thermal conductivity of imported backfill shall be tested in accordance with ASTM D5334-08 to confirm the thermal resistively is equal to or less than that of the native soil
- or, if applicable, the specific requirements on these plans. K. All plowing of underground raceways or wiring specified shall be accomplished using equipment
- and construction methods meeting the following criteria: a. Plowing shall not cause excessive bending of cables or ducts. Care should be taken not to
- exceed bending radius of cables or ducts allowed by NEC. b. The plow must be provided with means to assure positive holddown of the plow blade to
- provide proper depth at all times. c. When several cables or ducts are installed in a single operation, the plow shall have feeds
- for each cable or duct to provide specified separation.
- d. If an underground obstruction is encountered, the plow shall be lifted out of the ground and the obstruction removed by hand digging. Care must be taken that the cable has no bends sharper than the bending radius allowed by NEC and is not subject to excessive tension and/or any damage. Any necessary backfill shall be compacted per compaction requirements in civil drawings.
- d. After installation of cable or duct by plowing, the disturbed earth shall be leveled and compacted per compaction requirements in civil drawings. f. End of cable shall be tapped immediately after cutting to prevent moisture entering the
- L. Underground conduit shall be installed to allow drainage into manholes/handholes a minimum of 4 inches per 100 feet of horizontal run. Where conduits or ducts enter a manhole, handhole, or above grade cabinet, each shall be permanently identified by means of plastic fiber, laminated plastic or non-corrosive metal tags to indicate origination point. M.When non-metallic conduit requires field bending, utilize a hot-bending appliance. Use of
- torches to bend conduit is unacceptable.
- N. Where conduits terminate in handholes/vaults or in pad mounted equipment, terminate conduits a minimum of 4 inches above bedding or slab. Conduits shall use bell ends. Where routed through slabs, provide sleeves to allow settling/heaving of slab. O. Where HDPE innerduct is used, Schedule 40 PVC or Schedule 80 PVC (where subject to damage)
- conduit shall be used for transitions to above grade. SECTION 16120 - WIRING AND CABLE
- A. Building Wire:
- 1. Description: Single conductor insulated wire. 2. Conductor: 98% Commercially pure copper conductors or AA-8000 series aluminum alloy compact stranded conductors
- 3. Insulation Voltage Rating: 600 volts and 2000 volts
- 4. Insulation: ANSI/NFPA 70, 90° C Type THHN-2, THWN-2, XHHW-2, RHW-2, USE-2, and PV
- 6. 600V AC wiring installed below grade shall be type XHHW-2, RHW-2, or USE-2.
- B. Approved direct burial cable assembly shall be used only where approved.
- C. Use suitable wire pulling lubricant for building wire 4 AWG and larger.
- D. Neatly trim and lace wiring inside boxes, equipment, and panelboards.
- E. Clean conductor surfaces before installing lugs and connectors.
- F. Make splices, taps and terminations to carry full ampacity of conductors with no perceptible temperature rise.
- G. Parallel 3-phase feeder runs in conduit shall have all three phase conductors (including neutral and ground where required) installed in each conduit. Grouping a single phase (or two phases) in a single conduit is not permitted.

H. Identification

- 1. Control wiring shall be marked at both ends as to its function. 2. Spare conductors shall be identified as such.
- I. Direct burial wiring to meet spacing requirements under section 16110/I.
- J. Aluminum cable is allowed for all MV cables and any LVAC and DC cables #6 AWG and larger unless otherwise specified.

SECTION 16125 - MEDIUM VOLTAGE CABLES

- A. Cables for the 34.5 KV system shall be UD 35 KV MV-105 Listed single conductor, insulated, shielded and jacketed medium voltage type power cable with 100% insulation level, 90° C continuous operation rating, 130° C emergency rating, 250° C short circuit rating.
- B. Cable shall have ASTM B-609 aluminum conductors with Class B stranding in accordance with ASTM B-231, moisture blocked strands, an extruded semi-conducting shield layer (40 mil min.) over the conductor for stress control, direct-burial XLPE insulation (345 mils min.), a concentric copper neutral, and moisture/chemical/oil/flame resistant PVC jacket. C. Cables shall be Manufactured by Okonite, Prysmian, Southwire, General Cable, WTEC, or
- approved equal.
- D. All MV cables must use cable termination kit manufactured by 3M, TE Connectivity, Eaton/Cooper, or Richards.
- E. Complete installation shall be per National Electrical Code Articles 310 and 328. Do not exceed manufacturer's published maximum pulling tension or sidewall pressure. Provide sufficient slack in cable, ground and drain wires to permit elbow connectors to be moved to their respective parking stands.
- F. All cables shall be labeled at each end at an accessible location for viewing. Label shall indicate circuit, phase, and destination/origination. Labels shall be black phenolic with white lettering and secured with a minimum of (2) UV-resistant zip ties.
- G. Splices and terminations shall be made by an experienced journeyman whose qualifications are subject to approval by the Engineer. No splices shall be allowed unless specifically noted. No

- d. 12 inches between a communications conduit/cable and any power conduit/cable (AC or

- 5. Exposed PV module wiring and combiner box feeders shall be 2000 volt tray rated PV type.

- underground splices are permitted. Fiberglass splice boxes are not permitted unless approved by owner. All splices to be approved by owner.
- H. Arrange phases at termination points, A-B-C from left to right or top to bottom as viewed from the front.
- I. Test all cables according to IEEE Standard 400. Each power cable over 1000V shall be given a continuity test, and each medium voltage cable shall be given a continuity and a VLF test after installation and after terminations having been made. All single conductor cables shall be tested between conductors and ground with metallic shield and the other two conductors grounded to the same ground. Each conductor shall be successively tested in the same manner. Direct current voltages shall be applied with negative polarity to the cable conductor. See testing procedures as required.
- J. No cable shall be permanently energized until a copy of its test record is approved by the Engineer.
- K. In addition to any testing specified herein, perform testing consistent with the requirements of the applicable codes, NETA Acceptance Testing criteria, and the manufacturers' current quality assurance program.
- L. Direct burial wiring to meet spacing requirements under section 16110/I. SECTION 16130 - BOXES
- A. Pull and junction boxes shall be code gauge, gasketed, painted, galvanized steel, PVC, or fiberglass. Covers shall be secured with screws.
- B. Outlet boxes shall be cast malleable iron with threaded hubs or PVC and be of high conductive metal to maintain maximum electric continuity.
- C. All outlets shall be equipped with outlet boxes approved for the use.
- D. Covers or plates for boxes shall conform substantially to the outlet of the boxes with no projecting edges or corners.
- E. Conduit fittings ("LB", "C", "T") or types approved for the location may be employed as required to facilitate pulling in conductors. F. Provide pull and above ground junction boxes to facilitate pulling or splicing of conductors.
- G. Mount boxes to allow for maximum flexibility.
- H. Install grounding bushings with bonding conductor on all metallic feeder conduits entering box.
- Ground bushings and bonding conductors are not required on branch circuit conduits. SECTION 16340 - MEDIUM VOLTAGE SECTIONALIZING CABINETS/MEDIUM VOLTAGE JUNCTION BOXES
- A. Sectionalizing cabinets shall be designed for burial with the junction modules mounted above the ground line. Pedestals shall be in complete conformance with ANSI C57.12.28, Pad-mounted Equipment Enclosure Integrity Standard.
- B. Sectionalizing cabinets shall be Manufactured by Nordic, Cooper, Hubbell, G&W, Power Design Inc., Highline, Federal Pacific, Hoffman, S&C or approved equal.
- C. Enlosure shall be 3/16" nominal thickness fire resistant, laminate, fiberglass, with munsell green gel coat finish or shall be 12 gauge galvanized steel, with munsell green polyester powder coat finish. Enclosure access doors shall utilize stainless steel hinges and shall have provisions for padlocking. Doors shall have provisions for securing in the open position.
- D. Provide junction panels with bushings to accommodate the size and quantity of dead break elbows indicated on drawings.
- E. Provide ground bar in unit for bonding of ground conductors and concentric neutrals. F. Provide fiberglass ground sleeve extending 36" below cabinet installed on a 6" pea rock base to
- allow drainage. SECTION 16440 - DISCONNECT SWITCHES
- A. All disconnect switches shall be NEMA heavy duty Type H.D., horsepower rated, and U.L. listed. Disconnects shall be Eaton, GE, Square D, Siemens or approved equal.
- B. Provide auxiliary disconnect contacts for control circuits when supplied from an independent source.
- C. Switch Interior All switches shall have switch blades which are fully visible in the off position when the door is open. Switches shall be of dead-front construction with permanently attached arc suppressors hinged or otherwise attached to permit easy access to line-side lugs without removal of the arc suppressor. Lugs shall be UL listed for copper and/or aluminum cables and front removable. All current carrying parts shall be plated by electrolytic processes.
- D. Switch Mechanism Switches shall have a quick-make and quick-break operating handle and mechanism which shall be an integral part of the box, not the cover. Switches shall have a dual cover interlock to prevent unauthorized opening of the switch door in the ON position or closing of the switch mechanism with the door open. Switches shall provisions for locking the switch in both the ON and the OFF positions by padlock.
- E. Enclosures shall be NEMA 3R enclosures unless otherwise specified. Raintight covers shall be securable in the open position. Enclosures shall be code gauge (UL 98) galvanized steel (NEMA 3R). They shall be treated with a rust-inhibiting phosphate and finished in gray baked enamel. F. Install disconnect switches in an accessible location as convenient as possible to equipment
- served. G. Switches shall be rated for the voltage and system type they are used for. SECTION 16450 - GROUNDING
- A. Provide complete grounding systems as described herein and as shown on the drawings.
- B. All grounding components shall be listed for the purpose they are installed for. Components shall be Manufactured by AMPACT, Burndy, CADWELD, ITT Blackburn, Ilsco, or Lyncole.
- C. Ground rods shall be 3/4 inch diameter by 10 feet long copper clad steel. Connecting cables shall be copper as indicated on drawings. All ground conductors exposed to the elements or in direct contact with the earth shall be tin coated or bare copper.
- D. All metallic conduits, supports, cabinets, non-current carrying parts of equipment, and metallic structures shall be solidly grounded to form a continuous permanent and effective grounded system
- E. All wireways, metal enclosures, cable trays and similar parts of the electrical installation described herein shall be grounded.
- F. UFER grounds shall be via exothermically weld connection to a minimum of (2) continuous 20'-0" sections of rebar encased in the concrete footings/piers with a minimum of 2" of concrete cover. Rebar shall be a minimum of a #4 and shall NOT be epoxy coated. If multiple pieces of rebar are required to provide the 20'-0" lengths, they shall be welded together to provide a continuous ground path.
- G. The special attention of the Contractor is called to metallic building components and mechanical piping which must be grounded in an approved manner according to the NEC.
- H. Provide a continuous grounding conductor for each feeder serving several panelboards. Connect this ground conductor to each related cabinet ground bar.
- I. For LVAC circuits less than 1000 VAC not supplied by cables a with integral ground wire, provide a separate green insulated equipment grounding conductor for each single or three phase feeder and each branch circuit with a three phase protective device. Install the required grounding conductor in the common conduit with the related phase/hot and neutral conductors. Where parallel feeders are installed in more than one raceway, provide a green insulated equipment grounding conductor in each raceway.
- J. Single Phase Branch Circuits for Lighting, Receptacles, Motors and Other Similar Equipment: Provide single phase branch circuits serving lighting, receptacles, motors, and other similar equipment consisting of phase, neutral, and green insulated equipment ground conductor installed in a common conduit.
- K. Single Phase Branch Circuits for Special Equipment: Provide single phase branch circuits serving special equipment, and all branch circuits installed in nonmetallic or flexible conduits with a separate grounding conductor.

- (where applicable). conductor.
- device shall be considered a string.
- same order of magnitude as the grounding model/study. SECTION 16475 - FUSES
- Littelfuse.
- Class L, KLP-C.
- (600V).
- TRS-R (600 V); or Littelfuse Slo-Blo FLN-RL (250V) or FLS-R (600V)
- Type KTK fuse with 1A0513 boot or equal.
- equal.
- provided.
- replacement. SECTION 16630 - COMBINER BOXES
- approved equal.
- C. All fuse holders shall be finger-safe.
- holders shall be rated 30A fuses.
- disconnect rated as indicated on the combiner box schedules.
- F. All wire terminations/lugs shall be Listed for 90°C field terminations. of its collector bus/disconnect rating.
- μs) and maximum continuous operating voltage of 1500Vdc
- current rating, and integrated disconnect ampere rating.
- string and feeder conductors/conduits indicated on the schedules.
- fuse/terminal number

DC sources.

L. All transformers shall be bonded to the grounding electrode system as well as building steel

M.Bond all cable tray and equipment racks to ground with a minimum 4/0 AWG ground

N. Connections to the PV modules shall be installed such that removal of a module from the string does not interrupt the grounded conductor to another string. Sets of modules connected in series rated at 50 volts or more with or without blocking diodes, and having a single overcurrent

O.When required by the testing plan, the resistance to earth shall be measured using a 3-point fall of potential test with the inverter station ground grid isolated. Results shall be compared to grounding model/study to verify field measured earth resistance is within the

A.DC fuses for PV string circuits shall be 1500Vdc rated HP15M as Manufactured by Mersen. B. DC fuses for PV feeders shall be Class J or gPV type as Manufactured by Bussman, Mersen, or

C. Fuses in switchboard, 601A and larger shall be Class L type and be Bussman Class L, Limitron KTU (or Hi Cap KRP-C), CEFCO Class L, CLL, Ferraz Shawmut Class L, Amp Trap A4BY, or Littelfuse

D. Fuses for feeder circuits 600A and less shall be Class RK1 and be Bussman Low Peak LPN-RK (250V) or LPS-RK (600V); CEFCO Lo-Ip LON-RK (250V) or LOS-RK (600V); Ferraz Shawmut Amp-Trap II A2D-R (250V) or A6D-R (600 V); or Littelfuse Little Peak LLN-RK (250V) or LLS-RK

E. Fuses for motor circuits shall be Class RK5 type and be Bussman Fusetron FRN-R (250V) or FRS-R (600 V); CEFCO CEFCON CRN-R (250V) or CRS-R (600V); Ferraz Shawmut Trionic TR-R (250 V) or

F. For in-line fuses and weatherproof assembly, provide Bussman Tron Type HEB fuse holder and

G.For protection of control circuit transformers, provide Bussman Type FNQ time delay fuses or

H. Install fuses to allow viewing of "Blown-Fuse" indicators through viewing windows in gear, where

I. Provide label inside each switch and motor starter cover stating type of fuse required for

A. Provide 1500V combiner box(s) Listed to UL 1741, complete with circuitry as necessary to protect the equipment including disconnect switch with finger-safe fuse holders having all necessary fusing. Combiner boxes shall be Eaton/Cooper, Shoals, SolarBos, Amtec, Teal, Bentek, WTEC, or

B. A finger-safe, non-fused load break disconnect is required and it shall be interlocked to prevent the opening of the cover when the switch is in the ON position. Interlock shall be defeatable for testing purposes. Handle must be lockable in OFF position.

D. The combiner box shall be arranged to have a minimum number of input circuits and fuse sizes as indicated on the combiner box schedules for a negatively grounded system. Input fuse

E. Enclosures shall be a minimum of NEMA 3/IP54 with seamless door gaskets and an integral

G. Combiner boxes including disconnect and fuses shall be Listed for continuous operation at 100%

H. Provide units with integral DC surge protection devices rated for 40kA discharge current (8/20

I. Equipment shall have a nameplate installed and mounted to the front cover and indicate, at a minimum: number of input circuits, ampere rating of input circuits, voltage rating, short-circuit

J. Combiner box Manufacturer shall review combiner box schedules and verify combiner boxes enclosures are large enough and configured to allow termination of the size and quantity of

K. Provide typed PV string directory inside cover to denote strings and their associated

L. All combiner box components shall be pre-wired before arriving to site. M.Provide a directory of combiner boxes at each inverter to facilitate location and shut down of Westwood

Middleton, WI 53562

westwoodps.com

(608) 821-6600

Westwood Professional Services, Inc.

PREPARED FOR:

FREE STATE **SOLAR LLC.**

PREPARED FOR PROJECT NUMBER: 09100007

RE	VISIONS:			
#	DATE	COMMENT	BY	CHK APR
A	05/22/23	ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
В	06/16/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
С	07/13/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME

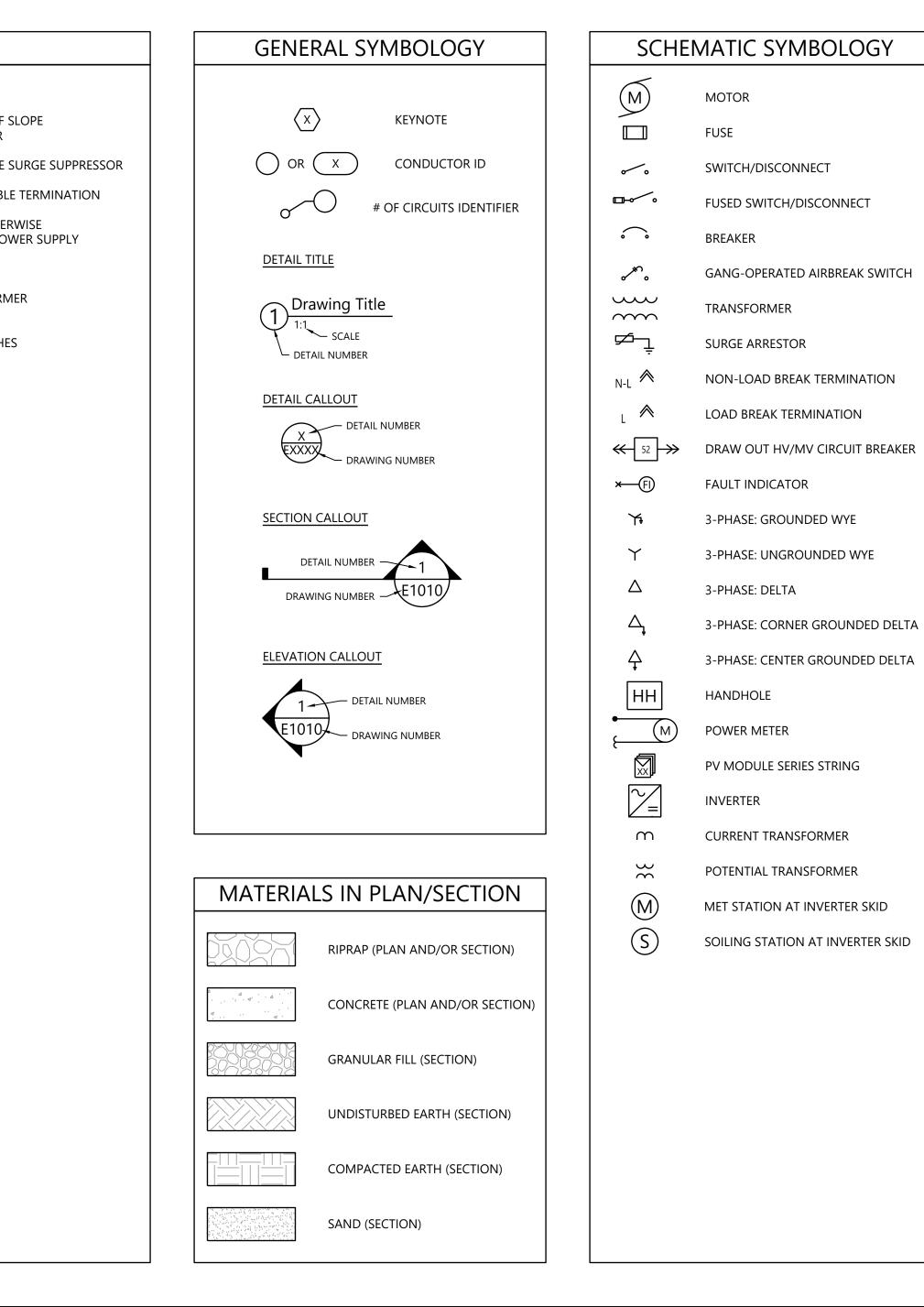
Kansas Sky **Energy Center**

Douglas County, Kansas

Electrical Notes

NOT FOR CONSTRUCTION

DATE:


07/13/2023

SHEET

			ABBREVIATIONS		
A, AMP	AMPERE	ID	INSIDE DIAMETER	TEL	TELEPHONE
AAT	AMBIENT AIR TEMPERATURE SENSOR	IMC	INTERMEDIATE METALLIC CONDUIT	THS	THERMAL SENSOR
ABAN	ABANDON	IN	INCH	TOS	TOP OF SLAB/TOE OF S
AC AFCI	ALTERNATING CURRENT ARC FAULT CIRCUIT INTERRUPTER	INS INV	INSULATOR INVERTER	TRNK TT	TRUNK CONDUCTOR TORQUE TUBE
AFCI AHJ	AUTHORITY HAVING JUSTISDICTION	JB	JUNCTION BOX (J-BOX)	TVSS	TRANSIENT VOLTAGE S
AIC	AMPERE INTERRUPTING CAPACITY	JBM	JUNCTION BOX - MEDIUM VOLTAGE	TYP	TYPICAL
AL	ALUMINUM	JMP	JUMPER CONDUCTOR	UCT	UNDERGROUND CABLE
ALIG	ALIGNMENT	kV	KILOVOLT	UG	UNDERGROUND
ALT	ALTERNATE	kVA	KILOVOLT AMPERE	UNO	UNLESS NOTED OTHER
ANE ATS	ANEMOMETER AUTOMATIC TRANSFER SWITCH	kVAR	KILOVOLT AMPERE REACTIVE	UPS UTIL	UNINTERRUPTIBLE POV UTILITY
AUTO	AUTOMATIC	kW kWH	KILOWATT KILOWATT HOUR	V	VOLT
AUX	AUXILIARY	LBD	LOAD BREAK DISCONNECT	VA	VOLT AMPERE
AWG	AMERICAN WIRE GAUGE	LBS	POUNDS	VT	VOLTAGE TRANSFORM
BAT	BATTERY	LV	LOW VOLTAGE	W	WATT
BESS	BATTERY ENERGY STORAGE SYSTEM	LVAC	LOW VOLTAGE ALTERNATING CURRENT	WP	WEATHERPROOF
BKR BLDG	BREAKER BUILDING	MAX		WSS WVA	WIND STOW SWITCHES WEATHER VANE
BRD	BOARD	MCB MCC	MINIATURE CIRCUIT BREAKER MOTOR CONTROL CENTER	XFMR	TRANSFORMER
BSTR	BATTERY STRING CIRCUIT CONDUCTOR	MCCB	MOLDED CASE CIRCUIT BREAKER	<i>,</i>	
BTSW	BATTERY STRING SWITCH	MET	METEOROLOGICAL STATION		
BUS	BUS CONDUCTOR	MIN	MINIMUM		
C	CONDUCTOR	MLO	MAIN LUG ONLY		
CA CAB	CAPACITOR BANK CABINET	MPNL			
САВ	CIRCUIT BREAKER	MPT MTR	MAIN POWER TRANSFORMER MOTOR		
CCS	COPPER CLAD STEEL	MTS	MOTOR MANUAL TRANSFER SWITCH		
CE	CONCRETE EDGE	MVAC	MEDIUM VOLTAGE ALTERNATING CURRENT		
CHGR	BATTERY CHARGER	NA	NOT APPLICABLE		
CIP	CAST-IN-PLACE	NC	NORMALLY CLOSED		
CL	CENTERLINE	NO	NORMALLY OPEN		
CLM CLR	CELLULAR MODEM CLEAR, CLEARANCE		NEUTRAL GROUNDING REACTOR		
CMB	COMBINER BOX	NTS OHC	NOT TO SCALE OVERHEAD CONDUCTOR		
CMP	CORRUGATED METAL PIPE	PCU	POWER CONVERSION UNIT		
CMW	CAB MESSENGER WIRE	POA	PLANE OF ARRAY PYRANOMETER		
CNT	CONDUIT	POH	POWER OVERHEAD		
COMM	COPPER COMMUNICATION CABLE	PCC	POINT OF COMMON COUPLING		
CT CTR	CURRENT TRANSFORMER CENTER	PED	PEDESTAL		
CU	COPPER	PF PH,Φ	POWER FACTOR PHASE		
DC	DIRECT CURRENT	PNL	PANEL		
DEMO	DEMOLITION	POI	POINT OF INTERCONNECTION		
DIA, Ø	DIAMETER	PPC	POWER PLANT CONTROLLER		
DISC	DISCONNECT	PV	PHOTOVOLTAIC		
DWG EA	DRAWING EACH	PVC	POLYVINYL CHLORIDE		
emt	ELECTRICAL METAL TUBING	PWR OPGW	POWER OPTICAL PATH GROUND WIRE		
EOP	EDGE OF PAVEMENT	QTY	QUANTITY		
EQ	EQUAL	R	RADIUS		
EQUIP	EQUIPMENT	R&R	REMOVE AND REPLACE		
EST	ESTIMATE	R&S	REMOVE AND SALVAGE		
EXIST F	EXISTING FUSE	RCB	RECOMBINER BOX		
FG	FUSE FINISHED GRADE	REF REL	REFERENCE RELAY		
FO	FIBER OPTIC	REQD	REQUIRED		
FOMM	FIBER OPTIC - MULTI MODE	REV	REVISION		
FOPP	FIBER OPTIC PATCH PANEL	RMT	REVENUE METER		
FOSM	FIBER OPTIC - SINGLE MODE	SA	SURGE ARRESTER		
FOSB	FIBER OPTIC SPLICE BOX/ENCLOSURE	SB	SPLICE BOX		
FT FS	FEET/FOOT FUSE	SCH	SCHEDULE		
GEN	GENERAL	SEC SF	SECTIONALIZER SQUARE FEET		
GFI	GROUND FAULT INTERRUPTER	SF	SUGARE FEET		
GRND	GROUND CONDUCTOR	SOG	SLAB ON GRADE		
GR	GRADE	SPD	SURGE PROTECTOR DEVICE		
GSU	GENERATION STEP-UP UNIT	SPEC	SPECIFICATION		
GSW		STR	PHOTOVOLTAIC STRING CIRCUIT		
HH HP	HANDHOLE/UNDERGROUND PULL BOX HORSE POWER	SW	SWITCH		
HPC	HIGH PRESSURE CONTACT SWITCH	SWBD SWF	SWITCHBOARD SWITCH - FUSED		
	HORIZONTAL PYRANOMETER	SWG	SWITCH - FOSED		
HPY		. 3 V V L T	JWITCHULAN		

APPROV	/ed wire color c	ODING: AC COND	UCTORS
	MEDIUM VOLTAGE	277/480-600V	UNDER 277V
PHASE A	SEE NOTE 4	BROWN	-
PHASE B	SEE NOTE 4	ORANGE	RED
PHASE C	SEE NOTE 4	YELLOW	BLUE
GROUNDED CONDUCTOR	-	GREY	WHITE
GROUNDING CONDUCTOR	GREEN OR BARE	GREEN or BARE	GREEN or BARE
GROUNDING ELECTRODE CONDUCTOR	-	GREEN W/ ORANGE	GREEN W/ ORANGE
APPROV	/ED WIRE COLOR C	ODING: DC COND	UCTORS
POSITIVE (+) CONDUCTOR	POSITIVE (+) CONDUCTOR		D
NEGATIVE (-) CONDUCTOR (GR	OUNDED)	BLA	ACK
GROUNDING CONDUCTOR		GREEN C	OR BARE

EQUIPMENT T STRING LOAD BREAK DISCONNE INVERTER TRACKER MOTOR INVERTER STEP-UP TRAI RECOMBINER SECTIONALIZER (JUNCT

1. 2. 3. 4. 5.	THIS IS A STAN SHEET. ALL SY NECESSARILY THESE SYMBO ENTIRE SET OF SCREENING O INDICATE EXIS DE-EMPHASIZ HIGHLIGHT SE CONTEXT OF E REFER TO SUB MATCH THE C CONDUCTORS CONTRACTOR COMPLIES WIT
	PLA
	X X PUG FO GAS TUG WAT
	X
	X
	X
	X

		EQUIPMENT LABELING		
Г ТҮРЕ	LABEL FORMAT	DESCRIPTION	EXAMPLE	INDICATION
	##.LBD#.STR#	BLOCK/INVERTER STATION NUMBER . LOAD BREAK DISCONNECT NUMBER . STRING NUMBER	24.LBD8.STR4	4TH STRING GOING TO LOAD BREAK DISCONNECT 8 IN BLOCK 24
INECT	##.LBD# or ##.RCB#.LBD#	BLOCK/INVERTER STATION NUMBER . RECOMBINER NUMBER (IF NEEDED) . LOAD BREAK DISCONNECT NUMBER	24.RCB1.LBD8	LOAD BREAK DISCONNECT 8 GOING TO RECOMBINER 1 IN BLOCK 24
	BLOCK.##	BLOCK/INVERTER STATION NUMBER .	BLOCK.24	INVERTER 24
	##.TM#	BLOCK/INVERTER STATION NUMBER . TRACKER MOTOR NUMBER	15.TM3	TRACKER MOTOR 3 LOCATED IN BLOCK 15
RANSFORMER	##.XFMR#	BLOCK/INVERTER STATION NUMBER . TRANSFORMER NUMBER	15.XFM1	TRANSFORMER 1 LOCATED IN BLOCK 15
	##.INV#.RCB#	BLOCK/INVERTER STATION NUMBER . INVERTER NUMBER . RECOMBINER NUMBER	24.I3.RCB2	RECOMBINER 2 GOING TO INVERTER 3 LOCATED IN BLOCK 24
CTION BOX)	SEC #.# or JB #.#	SECTIONALIZER (OR JUNCTION BOX). CIRCUIT IDENTIFIER . NUMBER	SEC.A.9 (or JB.A.9)	9TH SECTIONALIZER (OR JUNCTION BOX) FOR CIRCUIT A

AN SYMBOLOGY

	PRC	JECT BOUNDARY
	SEC	TION LINES
	RIG	HT-OF-WAY LINES
—	EAS	EMENT LINES
_	EX.	PAVED ROAD
=	EX.	GRAVEL ROAD
	EX.	FENCE
	EX.	UNDERGROUND POWER
	EX.	FIBER OPTIC LINE
	EX.	GAS PIPELINE
	EX.	TELEPHONE LINE
	EX.	WATER LINE
—	EX.	STREAM CHANNEL
\succ	EX.	WETLAND
	PRC	POSED ACCESS ROAD
	PRC	POSED SECURITY FENCE
	PRC	POSED LAYDOWN YARD
_	INV	ERTER BLOCK BOUNDARY
	CO	MBINER BOX BOUNDARY
	CO	MBINER BOX
	MV	JUNCTION/SPLICER BOX

Westwood Phone (608) 821-6600 8401 Greenway Blvd., Suite 400 Middleton, WI 53562 westwoodps.com

Westwood Professional Services, Inc.

PREPARED FOR:

FREE STATE **SOLAR LLC.**

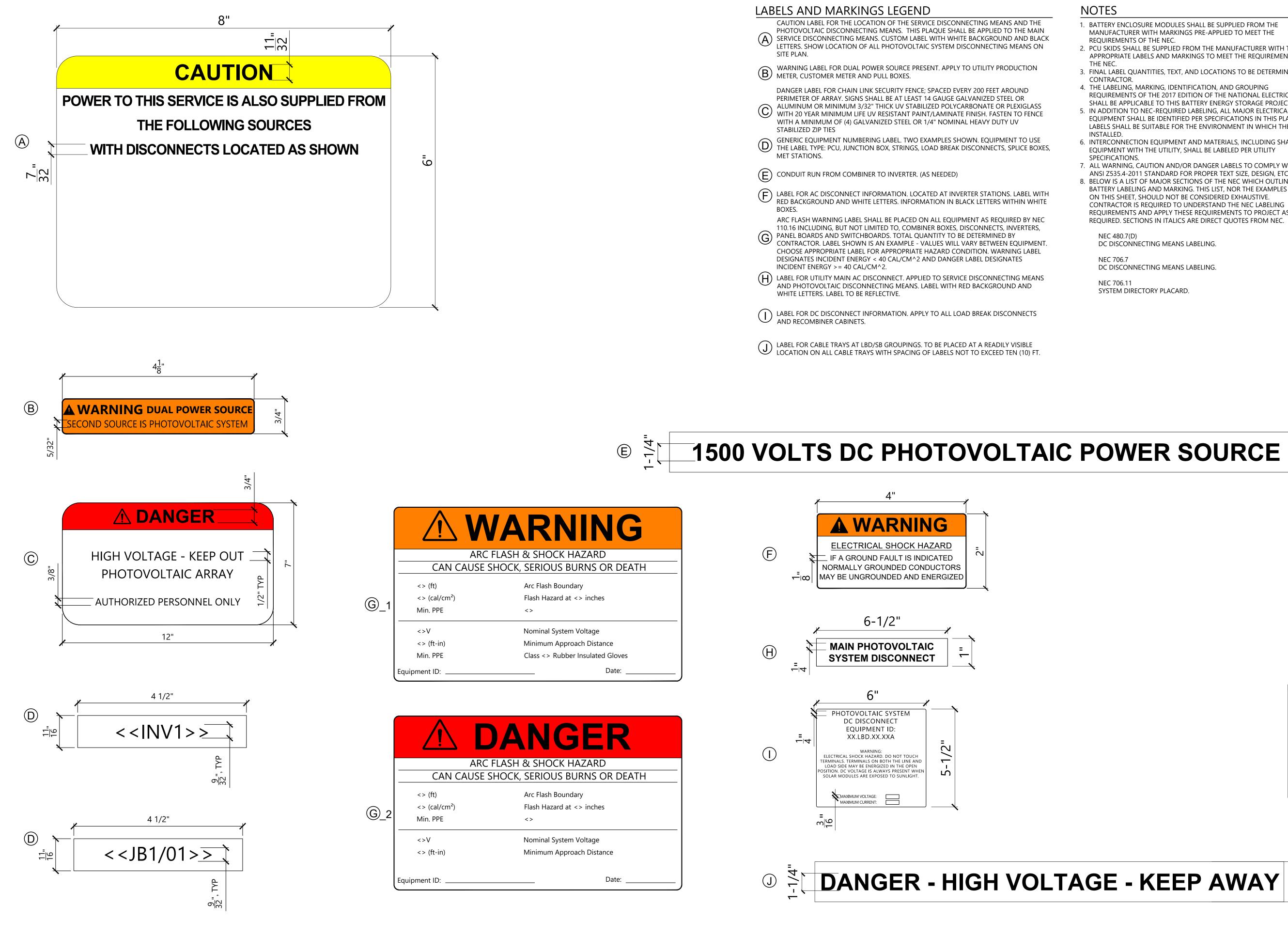
PREPARED FOR PROJECT NUMBER: 09100007

RE	VISIONS:			
#	DATE	COMMENT	BY	CHK APR
A	05/22/23	ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
В	06/16/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
С	07/13/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME

Kansas Sky **Energy Center**

Douglas County, Kansas

Electrical Symbology, Equipment Labeling & Abbreviations


NOT FOR CONSTRUCTION

DATE:

07/13/2023

SHEET:

1500 VOLTS DC PHOTOVOLTAIC POWER SOURCE

NOTES

- THE NEC.

- INSTALLED.
- SPECIFICATIONS.
- - NEC 706.7

1. BATTERY ENCLOSURE MODULES SHALL BE SUPPLIED FROM THE MANUFACTURER WITH MARKINGS PRE-APPLIED TO MEET THE **REQUIREMENTS OF THE NEC.**

2. PCU SKIDS SHALL BE SUPPLIED FROM THE MANUFACTURER WITH THE APPROPRIATE LABELS AND MARKINGS TO MEET THE REQUIREMENTS OF

3. FINAL LABEL QUANTITIES, TEXT, AND LOCATIONS TO BE DETERMINED BY CONTRACTOR.

4. THE LABELING, MARKING, IDENTIFICATION, AND GROUPING REQUIREMENTS OF THE 2017 EDITION OF THE NATIONAL ELECTRIC CODE SHALL BE APPLICABLE TO THIS BATTERY ENERGY STORAGE PROJECT. 5. IN ADDITION TO NEC-REQUIRED LABELING, ALL MAJOR ELECTRICAL EQUIPMENT SHALL BE IDENTIFIED PER SPECIFICATIONS IN THIS PLAN SET. LABELS SHALL BE SUITABLE FOR THE ENVIRONMENT IN WHICH THEY ARE

6. INTERCONNECTION EQUIPMENT AND MATERIALS, INCLUDING SHARED EQUIPMENT WITH THE UTILITY, SHALL BE LABELED PER UTILITY

7. ALL WARNING, CAUTION AND/OR DANGER LABELS TO COMPLY WITH ANSI Z535.4-2011 STANDARD FOR PROPER TEXT SIZE, DESIGN, ETC. 8. BELOW IS A LIST OF MAJOR SECTIONS OF THE NEC WHICH OUTLINE BATTERY LABELING AND MARKING. THIS LIST, NOR THE EXAMPLES SHOWN ON THIS SHEET, SHOULD NOT BE CONSIDERED EXHAUSTIVE. CONTRACTOR IS REQUIRED TO UNDERSTAND THE NEC LABELING REQUIREMENTS AND APPLY THESE REQUIREMENTS TO PROJECT AS REQUIRED. SECTIONS IN ITALICS ARE DIRECT QUOTES FROM NEC.

NEC 480.7(D) DC DISCONNECTING MEANS LABELING.

DC DISCONNECTING MEANS LABELING

NEC 706.11 SYSTEM DIRECTORY PLACARD.

Middleton, WI 53562

westwoodps.com

Phone (608) 821-6600

Westwood Professional Services, Inc.

PREPARED FOR:

2"

FREE STATE **SOLAR LLC.**

PREPARED FOR PROJECT NUMBER: 0910000

RE	VISIONS:			
#	DATE	COMMENT	BY	CHK APR
A	05/22/23	ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
В	06/16/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
С	07/13/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME

Kansas Sky **Energy Center**

Douglas County, Kansas

Labels & Markings

NOT FOR CONSTRUCTION

DATE:

2"

07/13/2023

SHEET

E0040

REV:

				1	К	ANSAS SK	Y ENERGY		DESIGN S	SUMMARY							
CAPACI	ГҮ	INV	/ERTER	TRA	NSFORMER	TRA	CKER	мс	DULE								
NAMEPLATE MWdc	195.62	MAKE	SMA	KVA	4400	MAKE	NEXTRACKER	MAKE	CSI								
NAMEPLATE MWac @39.6°C	144.32	MODEL	SC4400UP-US	TYPE	STEP UP	MODEL	NX HORIZON	MODEL	CS7N-670TB-AG								
MWac @POI	159.00	KVA @35°C	4400		34.5 KVAC (DELTA)			WATTAGE	670								
		DERATED KVA	3520	VOLTAGE	- 660VAC (WYE)			MODULES PER STRING	29	-							
			1														
				INVERTER	TRANSFORMER	мо	DULE					BLOCK CHAR	ACTERISTIC	5			
BLOCK	MV CIRCUIT NUMBE	R MODULE PITCH (FT)	MV CIRCUIT ROUTING	QUANTITY	QUANTITY	MODEL	WATTAGE (W)	QUANTITY OF STRINGS		QUANTITY OF 3-		QUANTITY OF 1-	QUANTITY O LBDS	F DC NAMEPLATE CAPACITY (KW-DC)	CAPACITY @ POI (KW-AC)	DC:AC ILR @ 35°C	DC:AC RATIC @ POI
BLOCK 01	CKT 1	21.1	UG	1	1	CS7N-670TB-AG	670	247	7163	58	33	7	LBDS	4799.21	3878.05	1.363	1.238
BLOCK 02	CKT 1	21.1	UG	1	1	CS7N-670TB-AG	670	246	7134	68	19	4		4779.78	3878.05	1.358	1.233
BLOCK 03	CKT 1	21.1	UG	1	1	CS7N-670TB-AG		247	7163	72	13	5	18	4799.21	3878.05	1.363	1.238
BLOCK 04	CKT 2	21.1	UG	1	1	CS7N-670TB-AG	670	242	7018	37	56	19		4702.06	3878.05	1.336	1.212
BLOCK 05	CKT 2	21.1	UG	1	1	CS7N-670TB-AG	670	247	7163	57	38	0		4799.21	3878.05	1.363	1.238
					1												
BLOCK 06	CKT 2	21.1	UG			CS7N-670TB-AG	670	204	5916	50	27	0		3963.72	3878.05	1.126	1.022
BLOCK 07	CKT 2	21.1	UG	1	1	CS7N-670TB-AG	670	246	7134	60	28	10		4779.78	3878.05	1.358	1.233
BLOCK 08	CKT 2	21.1	UG	1	1	CS7N-670TB-AG		250	7250	76	6	10		4857.50	3878.05	1.380	1.253
BLOCK 09	CKT 2	21.1	UG	1	1	CS7N-670TB-AG	670	247	7163	72	10	11		4799.21	3878.05	1.363	1.238
BLOCK 10	CKT 3	21.1	UG	1	1	CS7N-670TB-AG	670	247	7163	71	17	0		4799.21	3878.05	1.363	1.238
BLOCK 11	CKT 3	21.1	UG	1	1	CS7N-670TB-AG	670	246	7134	54	39	6		4779.78	3878.05	1.358	1.233
BLOCK 12	CKT 3	21.1	UG	1	1	CS7N-670TB-AG	670	247	7163	54	30	25		4799.21	3878.05	1.363	1.238
BLOCK 13	CKT 3	21.1	UG	1	1	CS7N-670TB-AG	670	246	7134	78	6	0		4779.78	3878.05	1.358	1.233
BLOCK 14	CKT 3	21.1	UG	1	1	CS7N-670TB-AG	670	245	7105	80	0	5	18	4760.35	3878.05	1.352	1.228
BLOCK 15	CKT 3	21.1	UG	1	1	CS7N-670TB-AG	670	262	7598	80	11	0		5090.66	3878.05	1.446	1.313
BLOCK 16	CKT 1	21.1	UG	1	1	CS7N-670TB-AG	670	247	7163	79	5	0		4799.21	3878.05	1.363	1.238
BLOCK 17	CKT 1	21.1	UG	1	1	CS7N-670TB-AG	670	247	7163	66	20	9		4799.21	3878.05	1.363	1.238
BLOCK 18	CKT 4	21.1	UG	1	1	CS7N-670TB-AG	670	247	7163	77	8	0		4799.21	3878.05	1.363	1.238
BLOCK 19	CKT 4	21.1	UG	1	1	CS7N-670TB-AG		246	7134	78	6	0		4779.78	3878.05	1.358	1.233
BLOCK 20	CKT 4	21.1	UG	1	1	CS7N-670TB-AG	670	217	6293	67	8	0		4216.31	3878.05	1.198	1.087
BLOCK 21	CKT 4	21.1	UG	1	1	CS7N-670TB-AG		247	7163	45	29	54		4799.21	3878.05	1.363	1.238
					1												
BLOCK 22	CKT 4	21.1	UG			CS7N-670TB-AG		247	7163	73	8	12		4799.21	3878.05	1.363	1.238
BLOCK 23	CKT 5	21.1	UG	1	1	CS7N-670TB-AG		247	7163	77	8	0		4799.21	3878.05	1.363	1.238
BLOCK 24	CKT 5	21.1	UG	1	1	CS7N-670TB-AG	670	247	7163	74	11	3		4799.21	3878.05	1.363	1.238
BLOCK 25	CKT 5	21.1	UG	1	1	CS7N-670TB-AG	670	243	7047	72	11	5		4721.49	3878.05	1.341	1.217
BLOCK 26	CKT 5	21.1	UG	1	1	CS7N-670TB-AG	670	247	7163	79	5	0		4799.21	3878.05	1.363	1.238
BLOCK 27	CKT 5	21.1	UG	1	1	CS7N-670TB-AG	670	253	7337	61	25	20		4915.79	3878.05	1.397	1.268
BLOCK 28	CKT 7	21.1	UG	1	1	CS7N-670TB-AG	670	247	7163	46	40	29		4799.21	3878.05	1.363	1.238
BLOCK 29	CKT 7	21.1	UG	1	1	CS7N-670TB-AG	670	247	7163	73	14	0		4799.21	3878.05	1.363	1.238
BLOCK 30	CKT 7	21.1	UG	1	1	CS7N-670TB-AG	670	247	7163	63	29	0		4799.21	3878.05	1.363	1.238
BLOCK 31	CKT 7	21.1	UG	1	1	CS7N-670TB-AG	670	247	7163	59	35	0		4799.21	3878.05	1.363	1.238
BLOCK 32	CKT 7	21.1	UG	1	1	CS7N-670TB-AG	670	247	7163	49	39	22		4799.21	3878.05	1.363	1.238
BLOCK 33	CKT 7	21.1	UG	1	1	CS7N-670TB-AG	670	247	7163	53	31	26		4799.21	3878.05	1.363	1.238
BLOCK 34	CKT 6	21.1	UG	1	1	CS7N-670TB-AG		247	7163	68	11	21		4799.21	3878.05	1.363	1.238
BLOCK 35	CKT 6	21.1	UG	1	1	CS7N-670TB-AG		250	7250	80	5	0		4857.50	3878.05	1.380	1.253
BLOCK 35	CKT 6	21.1	UG	1	1	CS7N-670TB-AG		230	7250	58	37	0		4818.64	3878.05	1.369	1.243
											2						
BLOCK 37	CKT 6	21.1	UG		 	CS7N-670TB-AG	670	247	7163	81	<u>ک</u>	0		4799.21	3878.05	1.363	1.238
BLOCK 38	CKT 6	21.1	UG	1	1	CS7N-670TB-AG		250	7250	66	21	10		4857.50	3878.05	1.380	1.253
BLOCK 39	CKT 7	21.1	UG	1	1	CS7N-670TB-AG	670	247	7163	57	16	44		4799.21	3878.05	1.363	1.238
BLOCK 40	CKT 8	21.1	UG	1	1	CS7N-670TB-AG	670	246	7134	60	23	20		4779.78	3878.05	1.358	1.233
BLOCK 41	CKT 9	21.1	UG	1	1	CS7N-670TB-AG	670	247	7163	49	32	36		4799.21	3878.05	1.363	1.238
			TOTALS	41	41		TOTALS	10,068	291,972	2,677	812	413	36	195,621	159,000	1.355	1.230

NEC METHOD:

31 V	SAM METHOD:	Module	Watt (W)	Array Max Vmp (V)	% of Time Greater Than 1325V	Voc(V)	Array Max Voc (V)	% of Time Greater than 1500V
		Canadian Soalr TOPBiHiKu7	670	1282.85	0	46.7	1468.92	0

Westwood Professional Services, Inc.

PREPARED FOR:

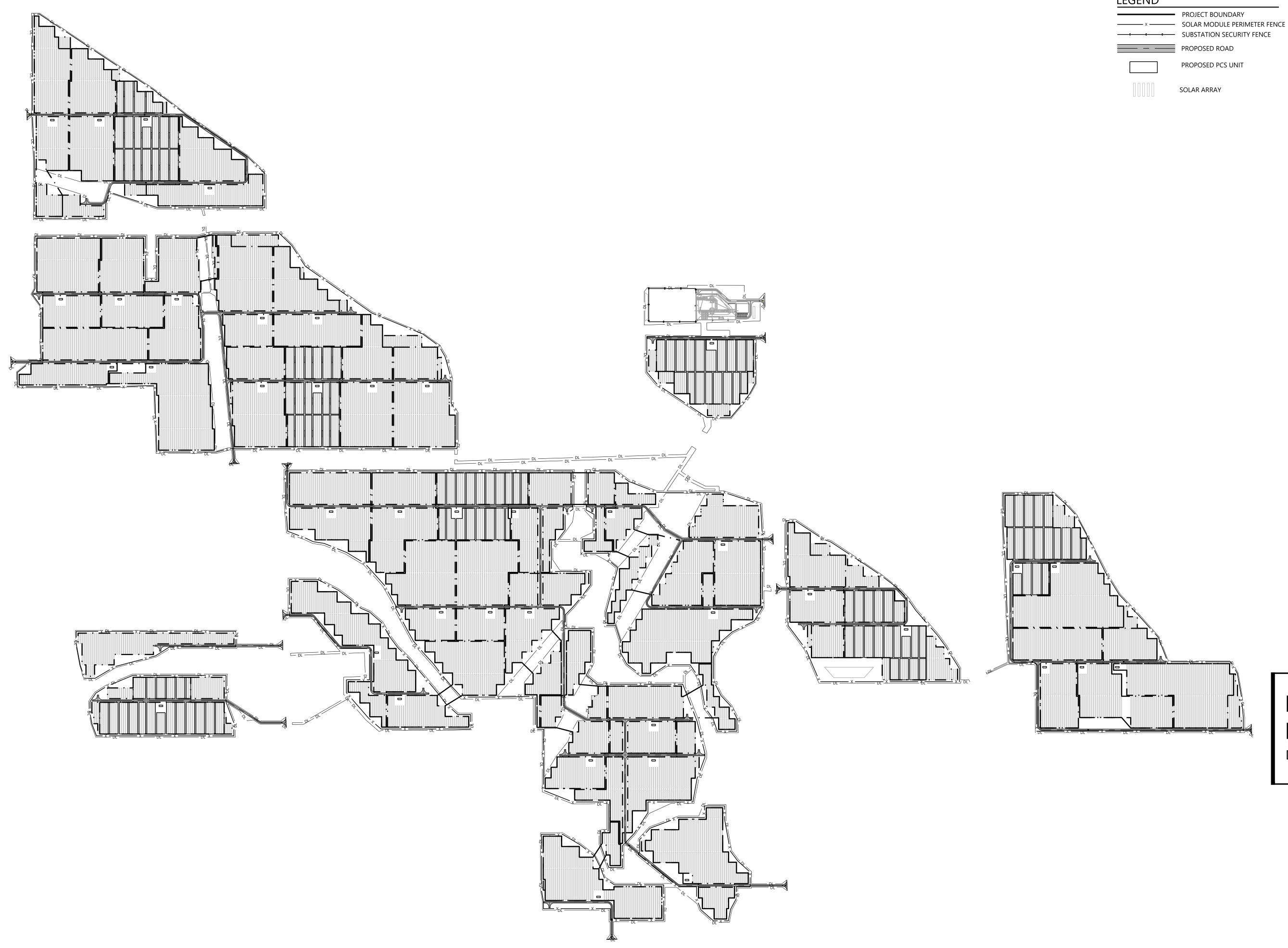
FREE STATE SOLAR LLC.

PREPARED FOR PROJECT NUMBER: 09100007

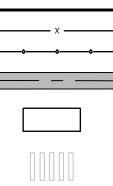
RE	VISIONS:			
#	DATE	COMMENT	BY	CHK APR
A	05/22/23	ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
В	06/16/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
С	07/13/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME

Kansas Sky **Energy Center** Douglas County, Kansas

Project Design Summary


NOT FOR CONSTRUCTION

DATE:


07/13/2023

SHEET:

LEGEND

- SUBSTATION SECURITY FENCE

Westwood Professional Services, Inc.

PREPARED FOR:

FREE STATE SOLAR LLC.

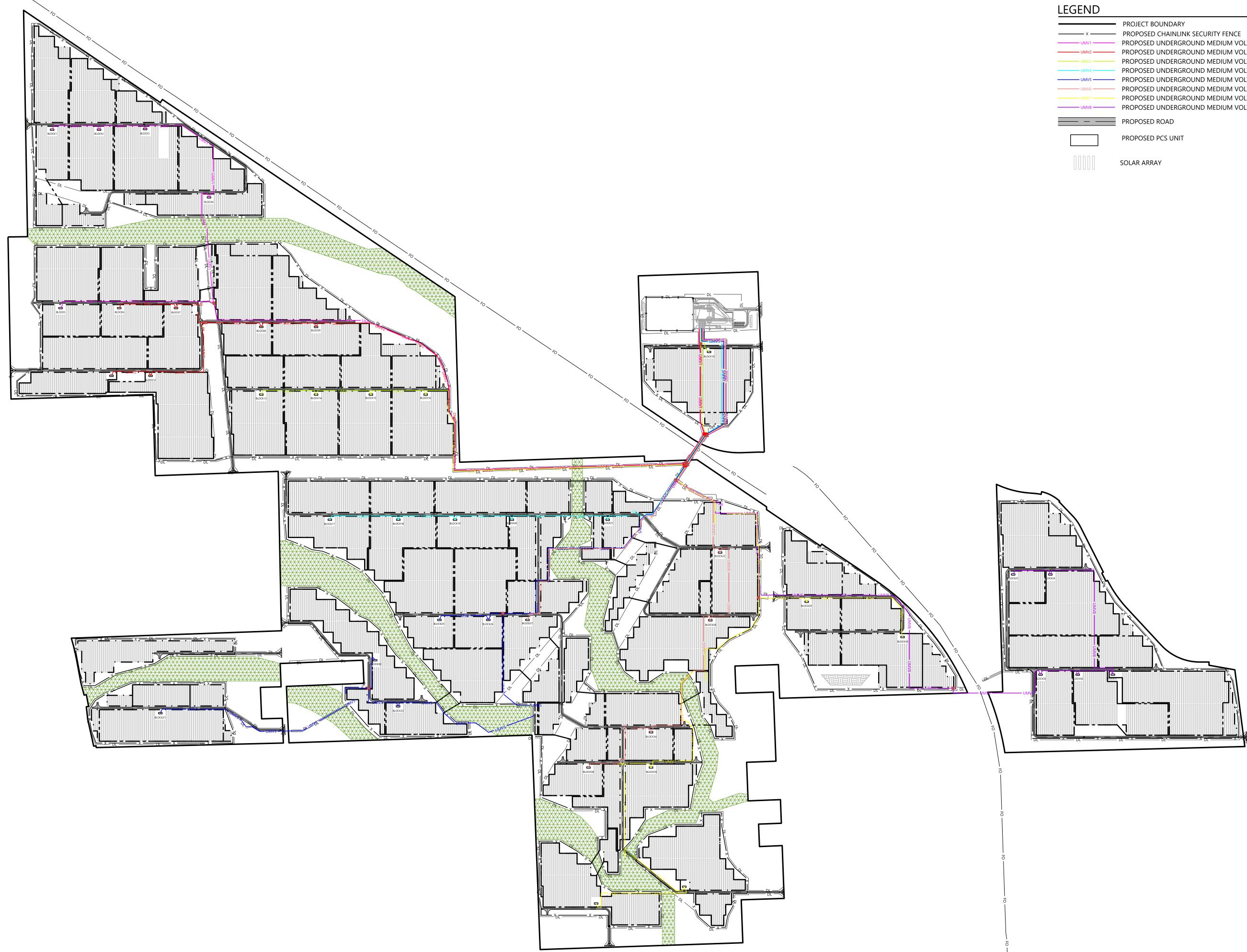
PREPARED FOR PROJECT NUMBER: 09100007

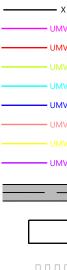
RE	VISIONS:			
#	DATE	COMMENT	BY	CHK APR
A	05/22/23	ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
В	06/16/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
С	07/13/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
D	08/09/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME

Kansas Sky Energy Center Douglas County, Kansas

Overall Site Plan

NOT FOR CONSTRUCTION


DATE:


08/09/2023

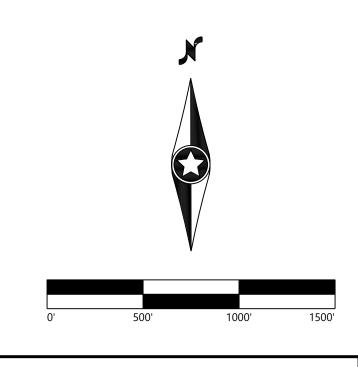
SHEET:

E0300

REV: D

PROPOSED UNDERGROUND MEDIUM VOLTAGE CIRCUIT 1 PROPOSED UNDERGROUND MEDIUM VOLTAGE CIRCUIT 2 PROPOSED UNDERGROUND MEDIUM VOLTAGE CIRCUIT 3 PROPOSED UNDERGROUND MEDIUM VOLTAGE CIRCUIT 4 PROPOSED UNDERGROUND MEDIUM VOLTAGE CIRCUIT 5 PROPOSED UNDERGROUND MEDIUM VOLTAGE CIRCUIT 6 PROPOSED UNDERGROUND MEDIUM VOLTAGE CIRCUIT 7 PROPOSED UNDERGROUND MEDIUM VOLTAGE CIRCUIT 8

Westwood Phone (608) 821-6600 8401 Greenway Blvd., Suite 400 Middleton, WI 53562 westwoodps.com


Westwood Professional Services, Inc.

PREPARED FOR:

FREE STATE SOLAR LLC.

PREPARED FOR PROJECT NUMBER: 09100007

RE	VISIONS:			
#	DATE	COMMENT	BY	CHK APR
A	05/22/23	ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
В	06/16/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
С	07/13/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
D	08/09/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME

Kansas Sky **Energy Center** Douglas County, Kansas

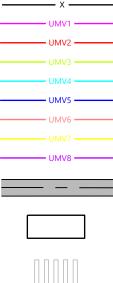
Overall MVAC Site Plan

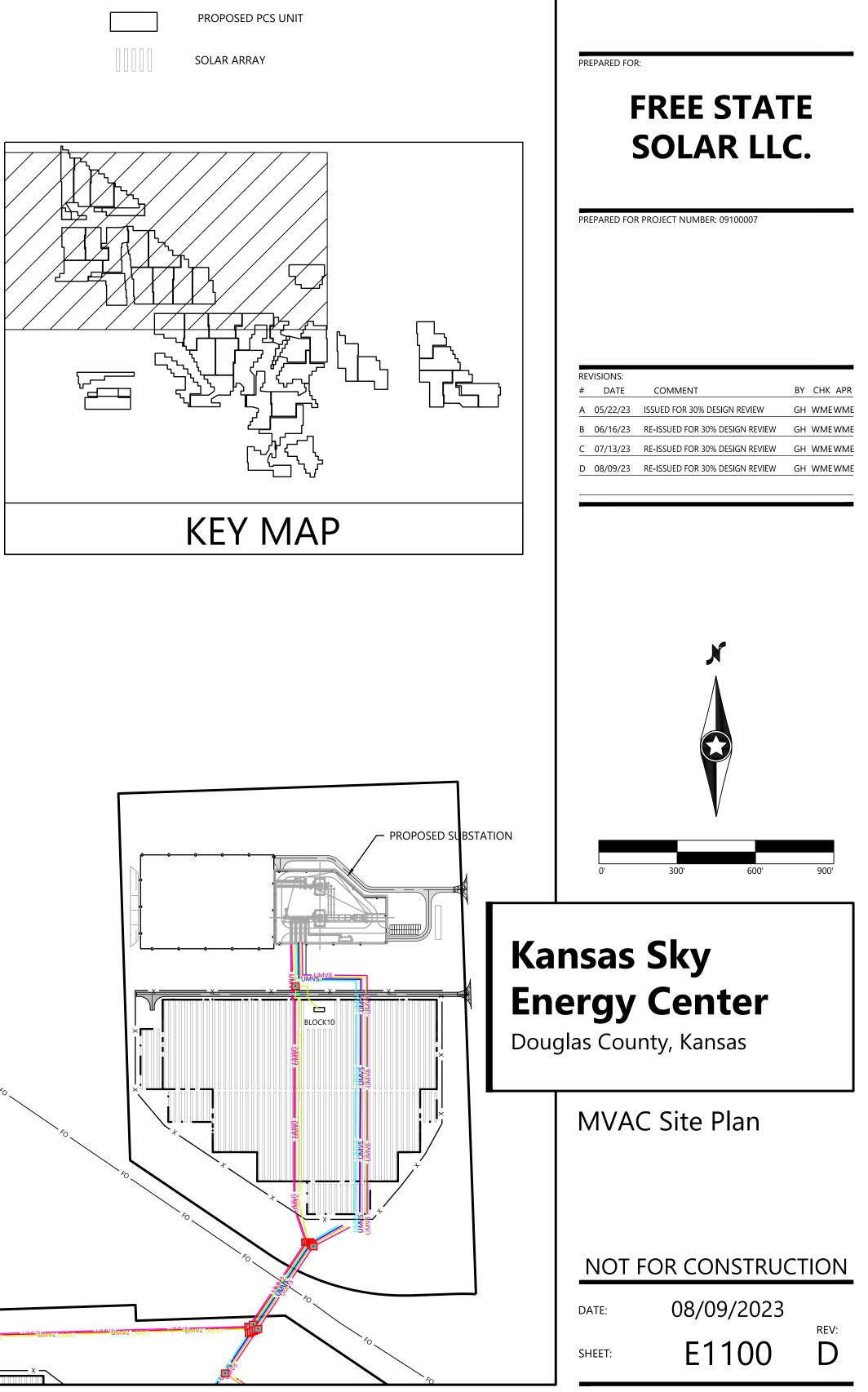
NOT FOR CONSTRUCTION

DATE:

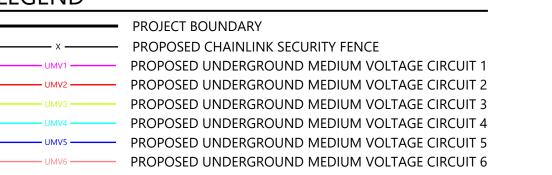
08/09/2023

E1000

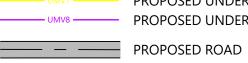

REV:

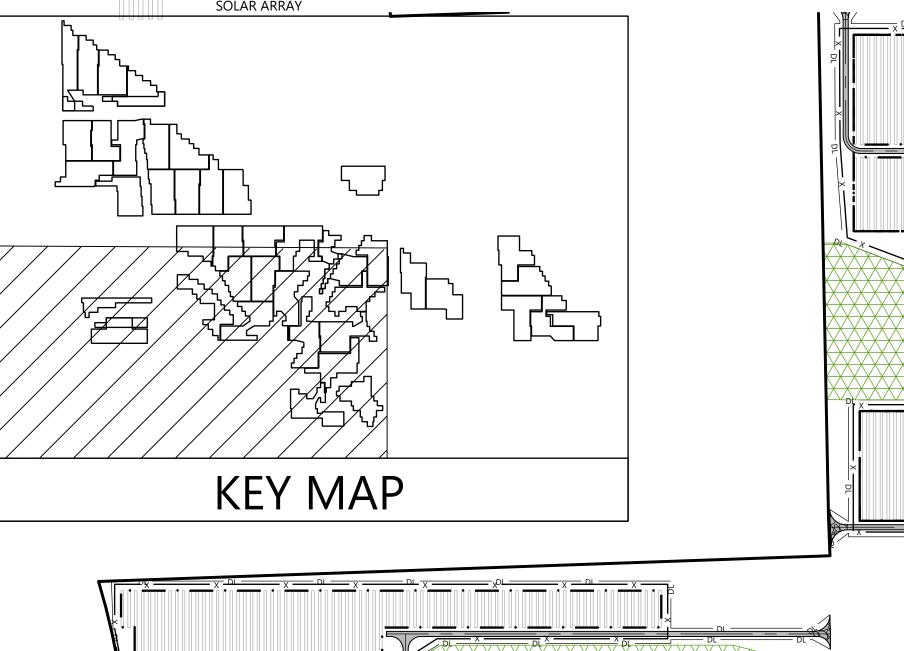

D

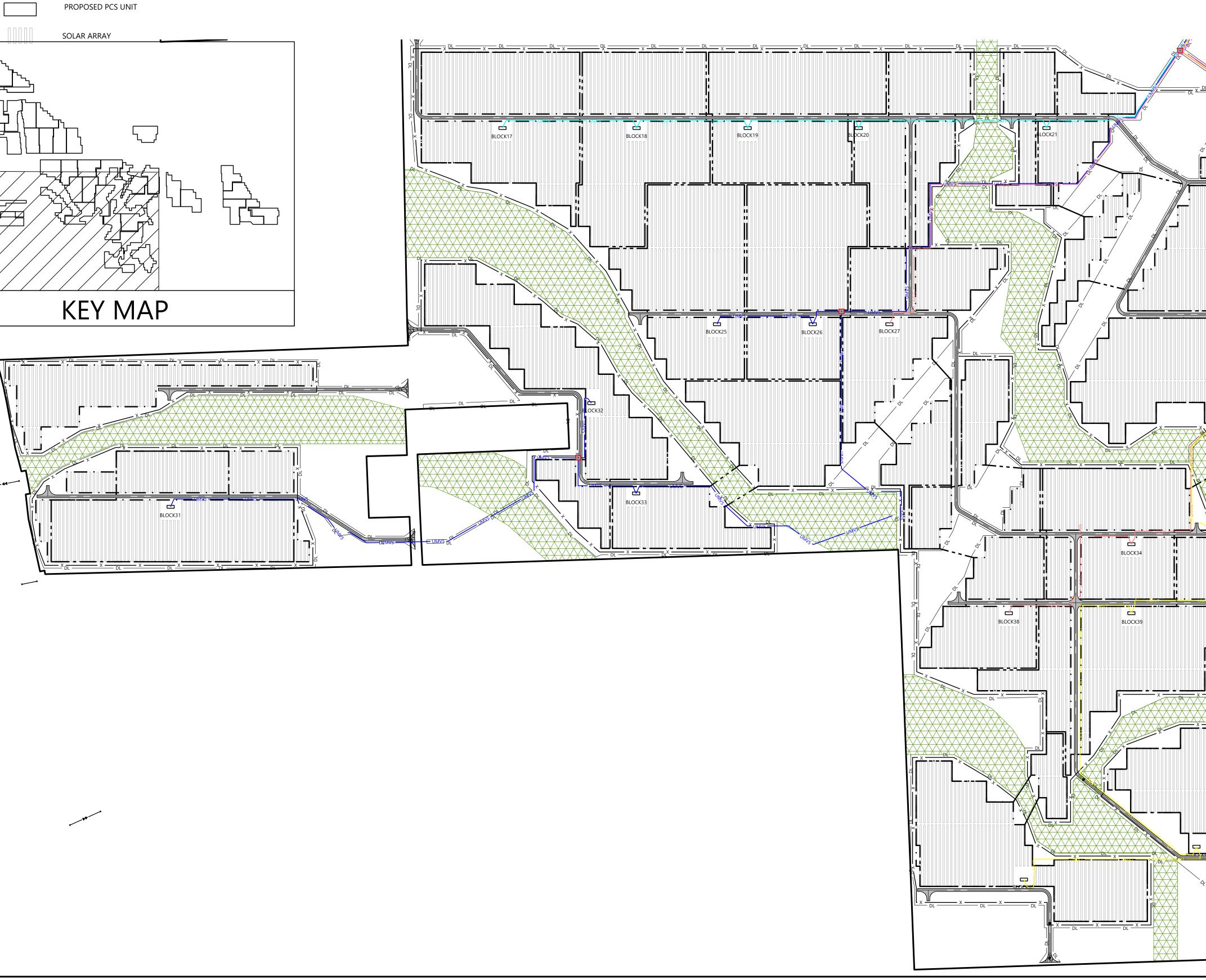
SHEET:



PROPOSED UNDERGROUND MEDIUM VOLTAGE CIRCUIT 1 PROPOSED UNDERGROUND MEDIUM VOLTAGE CIRCUIT 2 PROPOSED UNDERGROUND MEDIUM VOLTAGE CIRCUIT 3 PROPOSED UNDERGROUND MEDIUM VOLTAGE CIRCUIT 4 PROPOSED UNDERGROUND MEDIUM VOLTAGE CIRCUIT 5 PROPOSED UNDERGROUND MEDIUM VOLTAGE CIRCUIT 6




Westwood Professional Services, Inc.


LEGEND

- PROJECT BOUNDARY

PROPOSED CHAINLINK SECURITY FENCE PROPOSED UNDERGROUND MEDIUM VOLTAGE CIRCUIT 1 PROPOSED UNDERGROUND MEDIUM VOLTAGE CIRCUIT 2 PROPOSED UNDERGROUND MEDIUM VOLTAGE CIRCUIT 3 PROPOSED UNDERGROUND MEDIUM VOLTAGE CIRCUIT 4 PROPOSED UNDERGROUND MEDIUM VOLTAGE CIRCUIT 5 PROPOSED UNDERGROUND MEDIUM VOLTAGE CIRCUIT 6 PROPOSED UNDERGROUND MEDIUM VOLTAGE CIRCUIT 7 PROPOSED UNDERGROUND MEDIUM VOLTAGE CIRCUIT 8

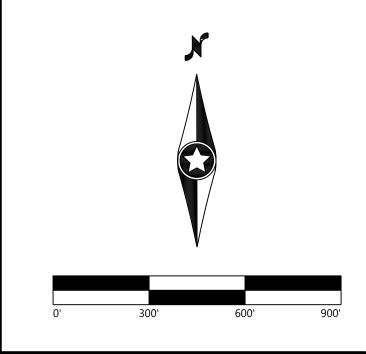
Westwood Phone (608) 821-6600 8401 Greenway Blvd., Suite 400 Middleton, WI 53562 westwoodps.com

Westwood Professional Services, Inc.

PREPARED FOR:

اختصاصا عادا عاملها

| ≚


BLOCK28

_ ┷ BLOCK22

FREE STATE SOLAR LLC.

PREPARED FOR PROJECT NUMBER: 09100007

RE	VISIONS:			
#	DATE	COMMENT	BY	CHK APR
A	05/22/23	ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
В	06/16/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
С	07/13/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
D	08/09/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME

Kansas Sky **Energy Center** Douglas County, Kansas

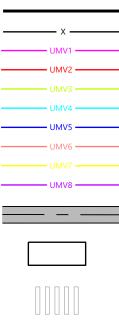
MVAC Site Plan

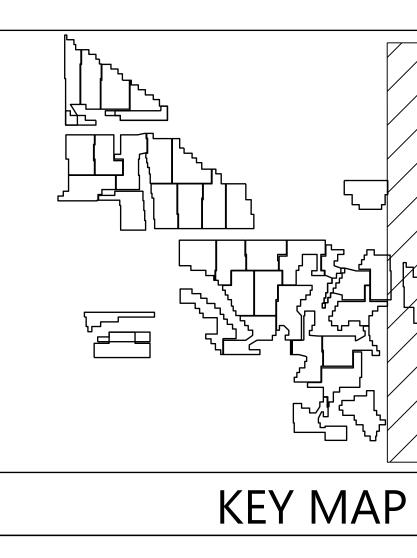
NOT FOR CONSTRUCTION

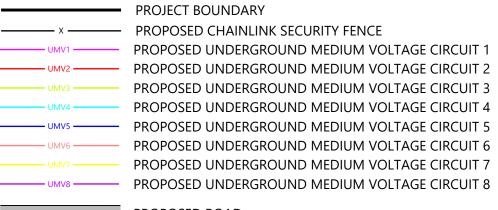
DATE:

08/09/2023

SHEET:


E1101


REV:


D

PROPOSED ROAD

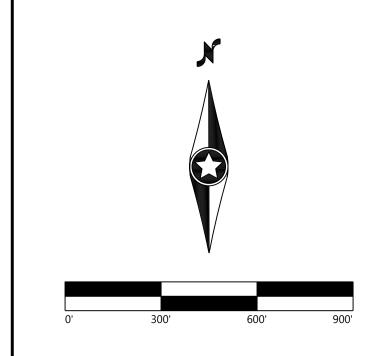
PROPOSED PCS UNIT

SOLAR ARRAY

PREPARED FOR PROJECT NUMBER: 09100007

RE	VISIONS:			
#	DATE	COMMENT	BY	CHK AP
A	05/22/23	ISSUED FOR 30% DESIGN REVIEW	GH	WMEWN
В	06/16/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWN
С	07/13/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWN
D	08/09/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWN

Westwood


FREE STATE

SOLAR LLC.

Phone (608) 821-6600 8401 Greenway Blvd., Suite 400 Middleton, WI 53562 westwoodps.com

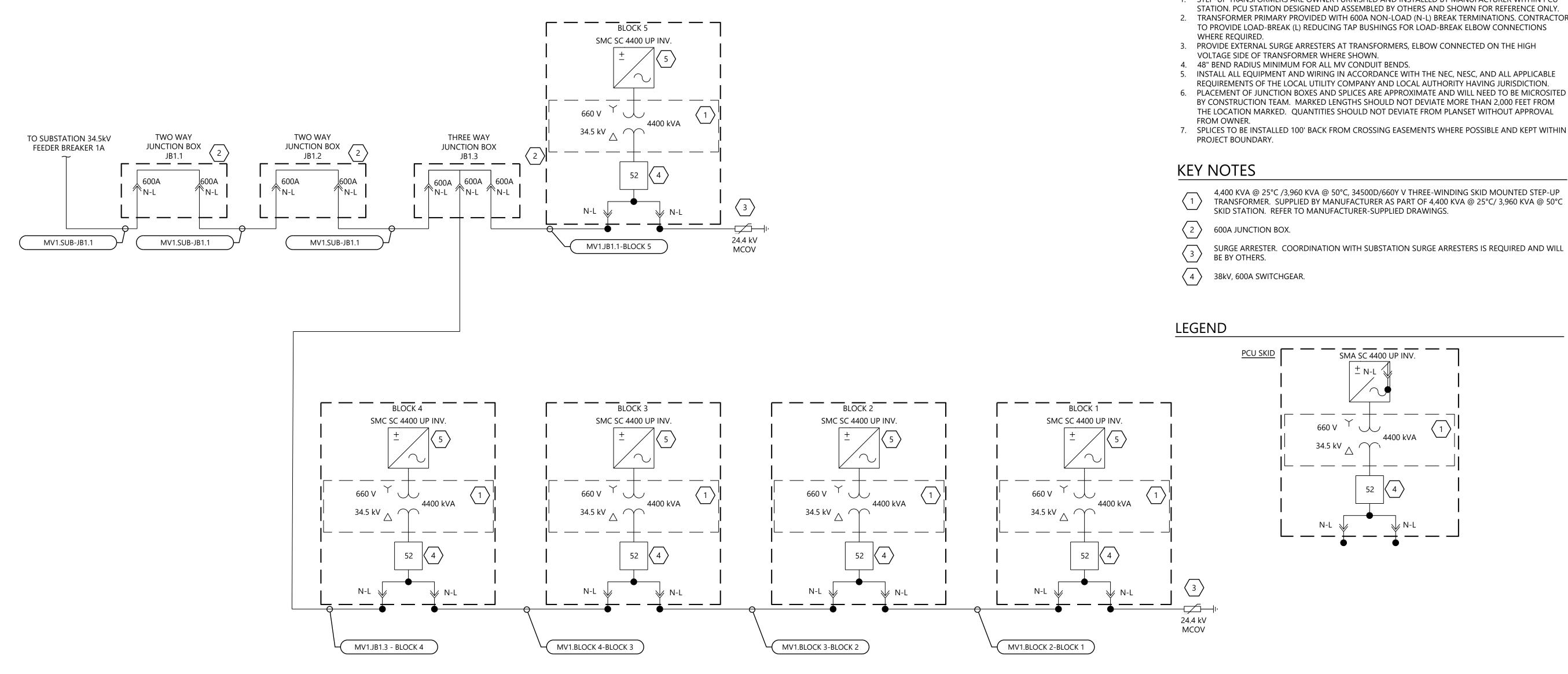
Westwood Professional Services, Inc.

PREPARED FOR:

Kansas Sky **Energy Center**

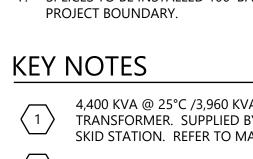
Douglas County, Kansas

MVAC Site Plan


NOT FOR CONSTRUCTION

DATE:

08/09/2023


SHEET:

								MVAC W	IRING SC	HEDULE			
CIRCUIT	CONDUCTOR LOCATION CODE	ORIGINATING EQUIPMENT		T I	lac (A)	LENGTH (FT)	CONDUCTOF SIZE	CONDUCTOR MATERIAL	# OF PARALLEL CIRCUITS	VOLTAGE DROP %	GROUND CONDUCTOR SIZE	GROUND CONDUCTOR MATERIAL	CONDUCTOR SPECIFICS
	MV1.SUB-JB1/1	SUB	JB1/1	34.5	368.17	1,159	1000	AL	1	0.0632%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV1.JB1/1-JB1/2	JB1/1	JB1/2	34.5	368.17	390	1000	AL	1	0.0219%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV1.JB1/2-JB1/3	JB1/2	JB1/3	34.5	368.17	6,457	1000	AL	1	0.3310%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
1	MV1.JB1/3-BLOCK5	JB1/3	BLOCK5	34.5	368.17	1,733	1000	AL	1	0.0903%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
L L	MV1.JB1/3-BLOCK4	JB1/3	BLOCK4	34.5	294.53	1,314	750	AL	1	0.0704%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV1.BLOCK4-BLOCK3	BLOCK4	BLOCK3	34.5	220.90	1,422	500	AL	1	0.0819%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV1.BLOCK3-BLOCK2	BLOCK3	BLOCK2	34.5	147.27	550	4/0	AL	1	0.0488%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV1.BLOCK2-BLOCK1	BLOCK2	BLOCK1	34.5	73.63	569	4/0	AL	1	0.0252%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE

SURGE ARRESTER. COORDINATION WITH SUBSTATION SURGE ARRESTERS IS REQUIRED AND WILL

1. STEP-UP TRANSFORMERS ARE OWNER FURNISHED AND INSTALLED BY MANUFACTURER WITHIN PCU

Westwood Professional Services, Inc.

PREPARED FOR:

FREE STATE **SOLAR LLC.**

PREPARED FOR PROJECT NUMBER: 09100007

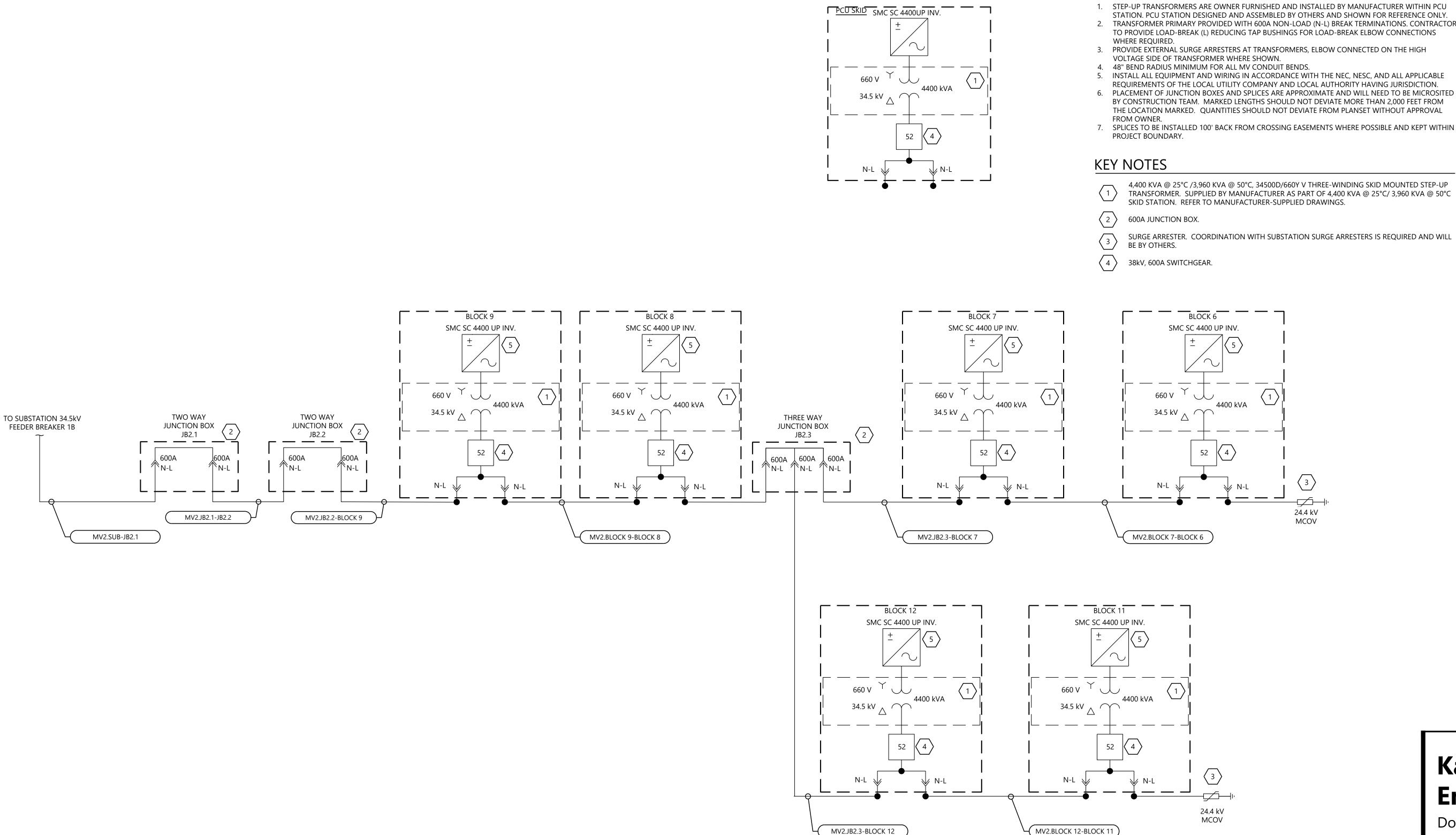
RE۱	VISIONS:			
#	DATE	COMMENT	BY	CHK APR
A	05/22/23	ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
В	06/16/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
С	07/13/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME

Kansas Sky **Energy Center**

Douglas County, Kansas

MVAC Single Line Diagram - Circuit 1

NOT FOR CONSTRUCTION


DATE:

07/13/2023 E1300

REV:

С

SHEET:

								MVAC W	IRING SC	HEDULE			
CIRCUIT	CONDUCTOR LOCATION CODE		TERMINATING EQUIPMENT	RATED Vac (kV)	lac (A)	LENGTH (FT)	CONDUCTOF SIZE	CONDUCTOR MATERIAL	# OF PARALLEL CIRCUITS	VOLTAGE DROP %	GROUND CONDUCTOR SIZE	GROUND CONDUCTOR MATERIAL	CONDUCTOR SPECIFICS
	MV2.SUB-JB2/1	SUB	JB2/1	34.5	441.80	1,160	1250	AL	1	0.0637%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV2.JB2/1-JB2/2	JB2/1	JB2/2	34.5	441.80	390	1250	AL	1	0.0221%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV2.JB2/2-BLOCK.9	JB2/2	BLOCK.9	34.5	441.80	5,230	1250	AL	1	0.2706%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV2.BLOCK.9-BLOCK.8	BLOCK.9	BLOCK.8	34.5	368.17	648	1000	AL	1	0.0351%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
2	MV2.BLOCK.8-JB2/3	BLOCK.8	JB2/3	34.5	294.53	630	750	AL	1	0.0348%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV2.JB2/3-BLOCK.7	JB2/3	BLOCK.7	34.5	147.27	527	4/0	AL	1	0.0469%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV2.BLOCK.7-BLOCK.6	BLOCK.7	BLOCK.6	34.5	73.63	674	4/0	AL	1	0.0295%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV2.JB2/3-BLOCK12	JB2/3	BLOCK12	34.5	147.27	1,171	4/0	AL	1	0.1002%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV2.BLOCK12-BLOCK11	BLOCK12	BLOCK11	34.5	73.63	485	4/0	AL	1	0.0217%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE

GENERAL NOTES

STATION. PCU STATION DESIGNED AND ASSEMBLED BY OTHERS AND SHOWN FOR REFERENCE ONLY. TRANSFORMER PRIMARY PROVIDED WITH 600A NON-LOAD (N-L) BREAK TERMINATIONS. CONTRACTOR

REQUIREMENTS OF THE LOCAL UTILITY COMPANY AND LOCAL AUTHORITY HAVING JURISDICTION. PLACEMENT OF JUNCTION BOXES AND SPLICES ARE APPROXIMATE AND WILL NEED TO BE MICROSITED BY CONSTRUCTION TEAM. MARKED LENGTHS SHOULD NOT DEVIATE MORE THAN 2,000 FEET FROM THE LOCATION MARKED. QUANTITIES SHOULD NOT DEVIATE FROM PLANSET WITHOUT APPROVAL

4,400 KVA @ 25°C /3,960 KVA @ 50°C, 34500D/660Y V THREE-WINDING SKID MOUNTED STEP-UP TRANSFORMER. SUPPLIED BY MANUFACTURER AS PART OF 4,400 KVA @ 25°C/ 3,960 KVA @ 50°C

SURGE ARRESTER. COORDINATION WITH SUBSTATION SURGE ARRESTERS IS REQUIRED AND WILL

Westwood Professional Services, Inc.

PREPARED FOR:

FREE STATE **SOLAR LLC.**

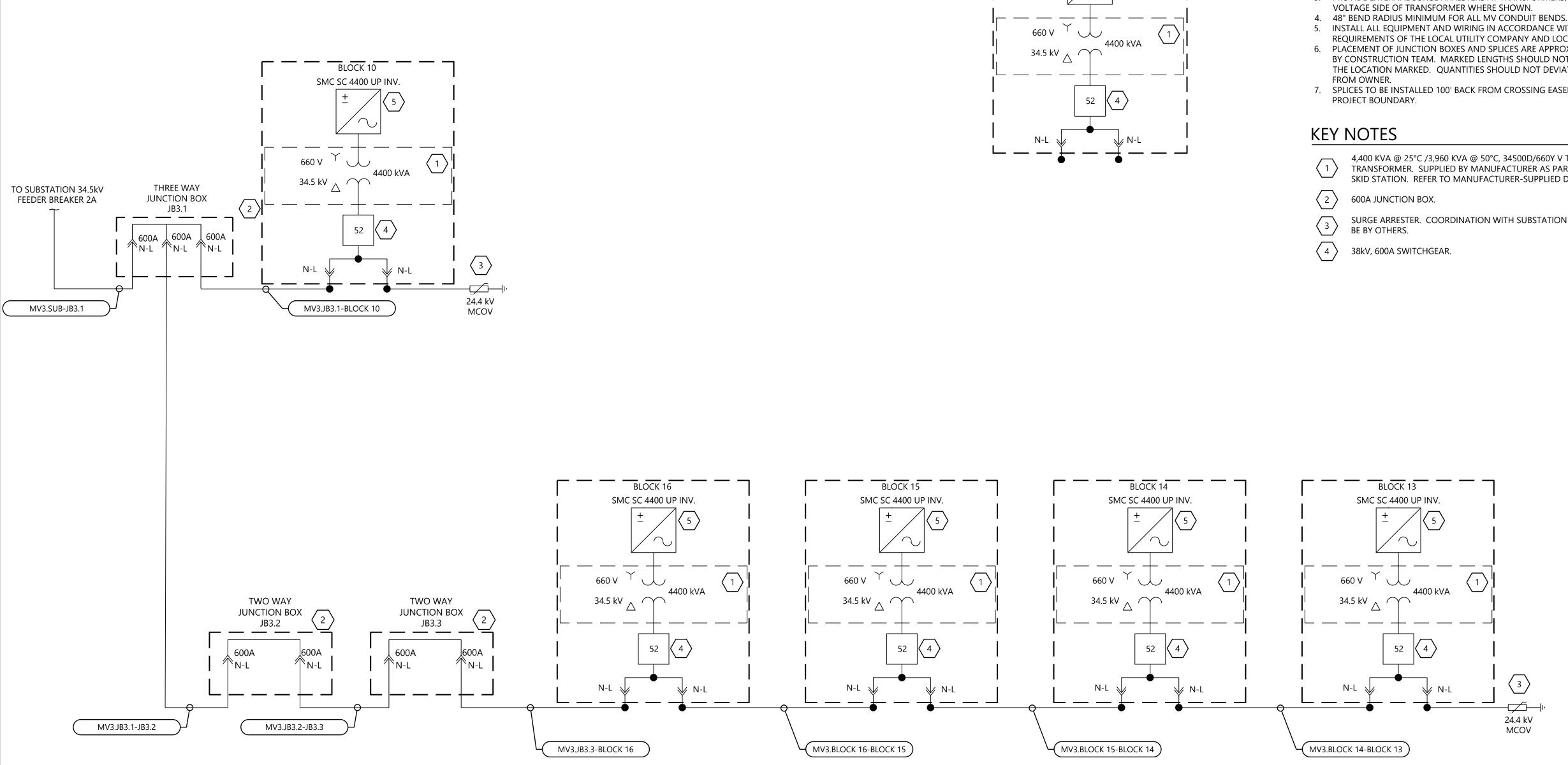
PREPARED FOR PROJECT NUMBER: 09100007

RE	VISIONS:			
#	DATE	COMMENT	BY	CHK APR
A	05/22/23	ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
В	06/16/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
С	07/13/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME

Kansas Sky **Energy Center**

Douglas County, Kansas

MVAC Single Line Diagram - Circuit 2


NOT FOR CONSTRUCTION

DATE:

07/13/2023 E1301

REV:

SHEET:

								MVAC W	/IRING SC	HEDULE			
CIRCUIT	CONDUCTOR LOCATION CODE	ORIGINATING EQUIPMENT			lac (A)	LENGTH (FT)	CONDUCTOR SIZE	CONDUCTOR MATERIAL	# OF PARALLEL CIRCUITS	VOLTAGE DROP %	GROUND CONDUCTOR SIZE	GROUND CONDUCTOR MATERIAL	CONDUCTOR SPECIFICS
	MV3.SUB-JB3/1	SUB	JB3/1	34.5	368.17	167	1000	AL	1	0.0127%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV3.JB3/1-BLOCK10	JB3/1	BLOCK10	34.5	73.63	154	4/0	AL	1	0.0080%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV3.JB3/1-JB3/2	JB3/1	JB3/2	34.5	294.53	995	750	AL	1	0.0539%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
2	MV3.JB3/2-JB3/3	JB3/2	JB3/3	34.5	294.53	380	750	AL	1	0.0218%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
5	MV3.JB3/3-BLOCK16	JB3/3	BLOCK16	34.5	294.53	3,703	750	AL	1	0.1947%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV3.BLOCK16-BLOCK15	BLOCK16	BLOCK15	34.5	220.90	654	500	AL	1	0.0389%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV3.BLOCK15-BLOCK14	BLOCK15	BLOCK14	34.5	147.27	654	4/0	AL	1	0.0574%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV3.BLOCK14-BLOCK13	BLOCK14	BLOCK13	34.5	73.63	655	4/0	AL	1	0.0288%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE

LEGEND

GENERAL NOTES

- PCU SKID SMC SC 4400UP INV.
- 2
- WHERE REQUIRED.

$\langle 1 \rangle$	4,400 KVA @ 25°C /3,960 KVA TRANSFORMER. SUPPLIED B SKID STATION. REFER TO MA
$\langle 2 \rangle$	600A JUNCTION BOX.
3	SURGE ARRESTER. COORDIN BE BY OTHERS.
$\left\langle 4 \right\rangle$	38kV, 600A SWITCHGEAR.

1. STEP-UP TRANSFORMERS ARE OWNER FURNISHED AND INSTALLED BY MANUFACTURER WITHIN PCU STATION. PCU STATION DESIGNED AND ASSEMBLED BY OTHERS AND SHOWN FOR REFERENCE ONLY. TRANSFORMER PRIMARY PROVIDED WITH 600A NON-LOAD (N-L) BREAK TERMINATIONS. CONTRACTOR TO PROVIDE LOAD-BREAK (L) REDUCING TAP BUSHINGS FOR LOAD-BREAK ELBOW CONNECTIONS

3. PROVIDE EXTERNAL SURGE ARRESTERS AT TRANSFORMERS, ELBOW CONNECTED ON THE HIGH

INSTALL ALL EQUIPMENT AND WIRING IN ACCORDANCE WITH THE NEC, NESC, AND ALL APPLICABLE REQUIREMENTS OF THE LOCAL UTILITY COMPANY AND LOCAL AUTHORITY HAVING JURISDICTION. 6. PLACEMENT OF JUNCTION BOXES AND SPLICES ARE APPROXIMATE AND WILL NEED TO BE MICROSITED BY CONSTRUCTION TEAM. MARKED LENGTHS SHOULD NOT DEVIATE MORE THAN 2,000 FEET FROM THE LOCATION MARKED. QUANTITIES SHOULD NOT DEVIATE FROM PLANSET WITHOUT APPROVAL

7. SPLICES TO BE INSTALLED 100' BACK FROM CROSSING EASEMENTS WHERE POSSIBLE AND KEPT WITHIN

A @ 50°C, 34500D/660Y V THREE-WINDING SKID MOUNTED STEP-UP BY MANUFACTURER AS PART OF 4,400 KVA @ 25°C/ 3,960 KVA @ 50°C IANUFACTURER-SUPPLIED DRAWINGS.

NATION WITH SUBSTATION SURGE ARRESTERS IS REQUIRED AND WILL

westwoodps.com

Westwood Professional Services, Inc.

PREPARED FOR:

FREE STATE **SOLAR LLC.**

PREPARED FOR PROJECT NUMBER: 09100007

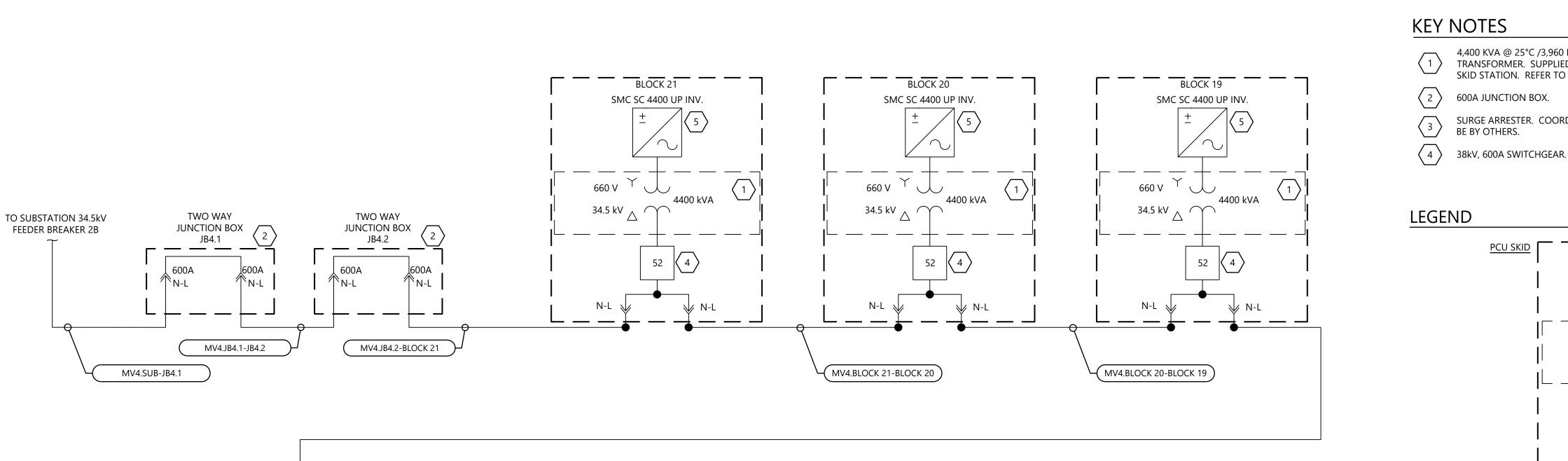
RE	VISIONS:			
#	DATE	COMMENT	BY	CHK APR
A	05/22/23	ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
В	06/16/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
С	07/13/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME

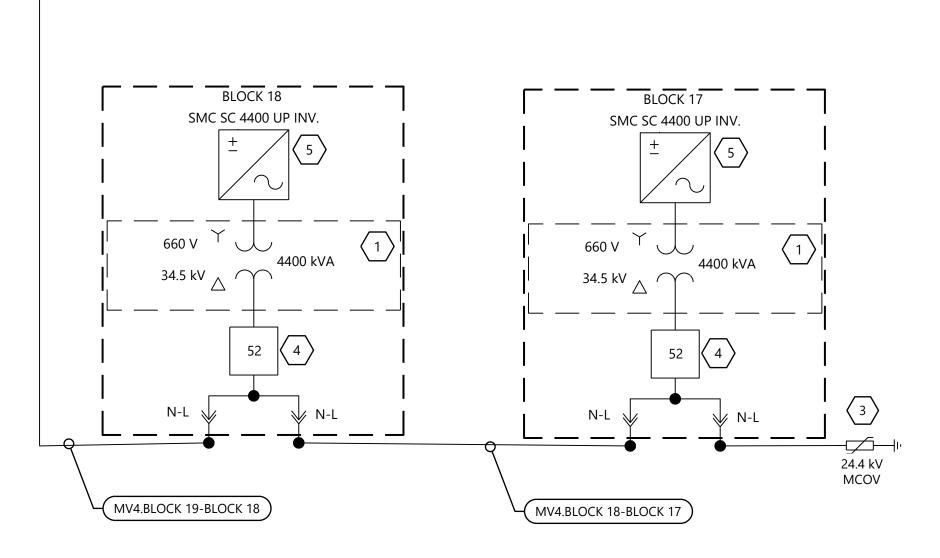
Kansas Sky **Energy Center**

Douglas County, Kansas

MVAC Single Line Diagram - Circuit 3

NOT FOR CONSTRUCTION


DATE:


07/13/2023

SHEET:

E1302

REV:

								MVAC W	/IRING SC	HEDULE			
CIRCUIT	CONDUCTOR LOCATION CODE	ORIGINATING EQUIPMENT		1 1	lac (A)	LENGTH (FT)	CONDUCTOF SIZE	CONDUCTOR	# OF PARALLEL CIRCUITS	VOLTAGE DROP %	GROUND CONDUCTOR SIZE	GROUND CONDUCTOR MATERIAL	CONDUCTOR SPECIFICS
	MV4.SUB-JB4/1	SUB	JB4/1	34.5	368.17	1,468	1000	AL	1	0.0790%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV4.JB4/1-JB4/2	JB4/1	JB4/2	34.5	368.17	420	1000	AL	1	0.0234%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV4.JB4/2-BLOCK21	JB4/2	BLOCK21	34.5	368.17	1,157	1000	AL	1	0.0610%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
4	MV4.BLOCK21-BLOCK20	BLOCK21	BLOCK20	34.5	294.53	1,098	750	AL	1	0.0592%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV4.BLOCK20-BLOCK19	BLOCK20	BLOCK19	34.5	220.90	671	500	AL	1	0.0398%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV4.BLOCK19-BLOCK18	BLOCK19	BLOCK18	34.5	147.27	671	4/0	AL	1	0.0588%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV4.BLOCK18-BLOCK17	BLOCK18	BLOCK17	34.5	73.63	799	4/0	AL	1	0.0347%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE

GENERAL NOTES

- WHERE REQUIRED.
- VOLTAGE SIDE OF TRANSFORMER WHERE SHOWN.
- 4. 48" BEND RADIUS MINIMUM FOR ALL MV CONDUIT BENDS.
- FROM OWNER.
- PROJECT BOUNDARY.

1. STEP-UP TRANSFORMERS ARE OWNER FURNISHED AND INSTALLED BY MANUFACTURER WITHIN PCU STATION. PCU STATION DESIGNED AND ASSEMBLED BY OTHERS AND SHOWN FOR REFERENCE ONLY. 2. TRANSFORMER PRIMARY PROVIDED WITH 600A NON-LOAD (N-L) BREAK TERMINATIONS. CONTRACTOR TO PROVIDE LOAD-BREAK (L) REDUCING TAP BUSHINGS FOR LOAD-BREAK ELBOW CONNECTIONS

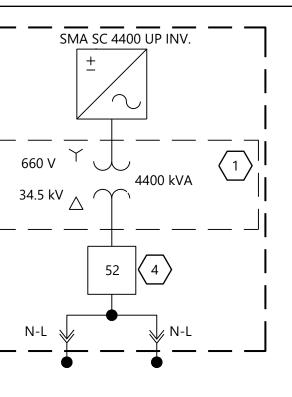
3. PROVIDE EXTERNAL SURGE ARRESTERS AT TRANSFORMERS, ELBOW CONNECTED ON THE HIGH

5. INSTALL ALL EQUIPMENT AND WIRING IN ACCORDANCE WITH THE NEC, NESC, AND ALL APPLICABLE REQUIREMENTS OF THE LOCAL UTILITY COMPANY AND LOCAL AUTHORITY HAVING JURISDICTION. 6. PLACEMENT OF JUNCTION BOXES AND SPLICES ARE APPROXIMATE AND WILL NEED TO BE MICROSITED BY CONSTRUCTION TEAM. MARKED LENGTHS SHOULD NOT DEVIATE MORE THAN 2,000 FEET FROM THE LOCATION MARKED. QUANTITIES SHOULD NOT DEVIATE FROM PLANSET WITHOUT APPROVAL

7. SPLICES TO BE INSTALLED 100' BACK FROM CROSSING EASEMENTS WHERE POSSIBLE AND KEPT WITHIN

4,400 KVA @ 25°C /3,960 KVA @ 50°C, 34500D/660Y V THREE-WINDING SKID MOUNTED STEP-UP TRANSFORMER. SUPPLIED BY MANUFACTURER AS PART OF 4,400 KVA @ 25°C/ 3,960 KVA @ 50°C SKID STATION. REFER TO MANUFACTURER-SUPPLIED DRAWINGS.

SURGE ARRESTER. COORDINATION WITH SUBSTATION SURGE ARRESTERS IS REQUIRED AND WILL


westwoodps.com

Westwood Professional Services, Inc.

PREPARED FOR:

FREE STATE **SOLAR LLC.**

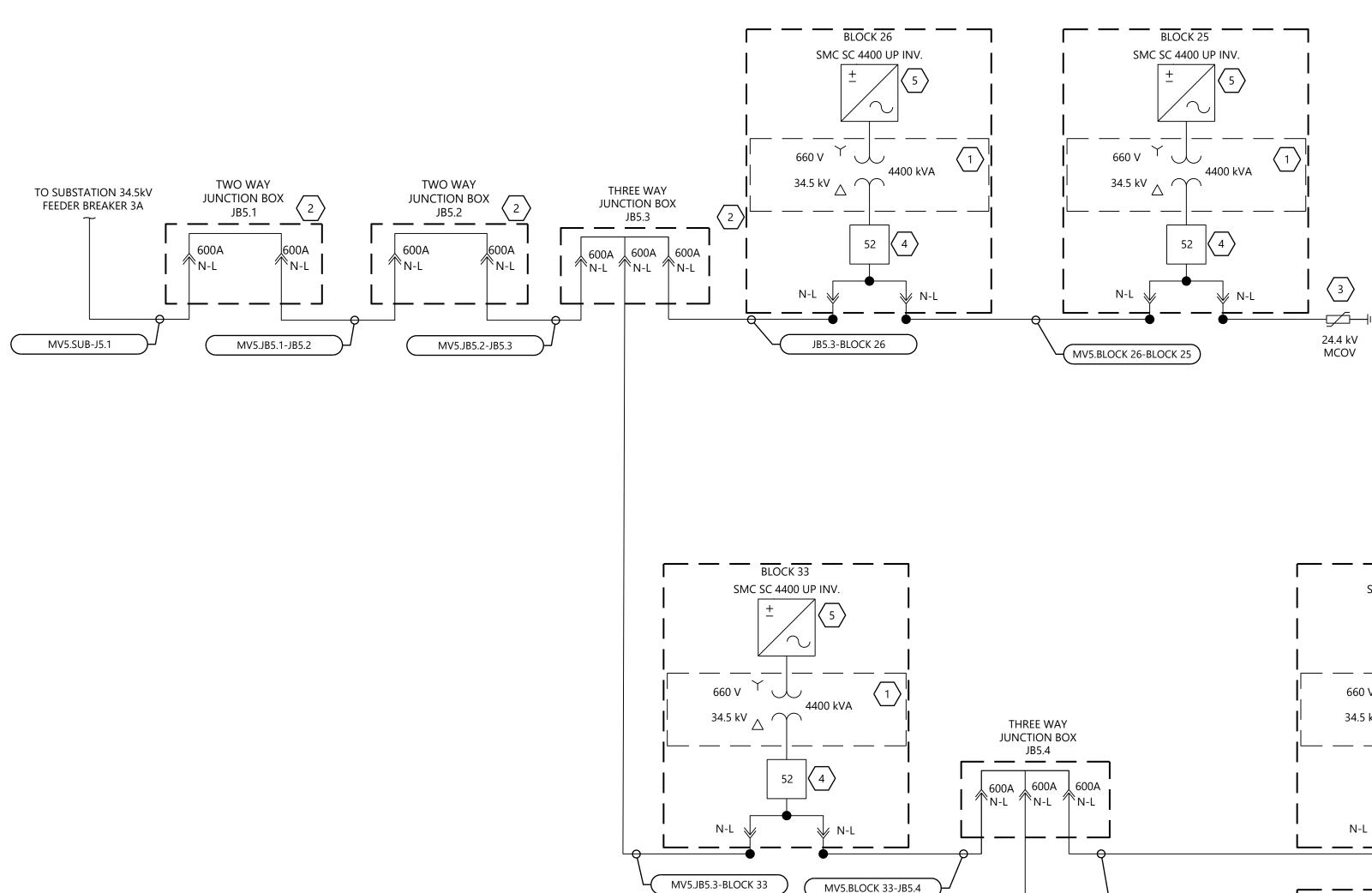
PREPARED FOR PROJECT NUMBER: 09100007

REVISIONS: COMMENT # DATE BY CHK APR A 05/22/23 ISSUED FOR 30% DESIGN REVIEW GH WMEWME B 06/16/23 RE-ISSUED FOR 30% DESIGN REVIEW GH WME WME C 07/13/23 RE-ISSUED FOR 30% DESIGN REVIEW GH WME WME

Kansas Sky **Energy Center**

Douglas County, Kansas

MVAC Single Line Diagram - Circuit 4


NOT FOR CONSTRUCTION

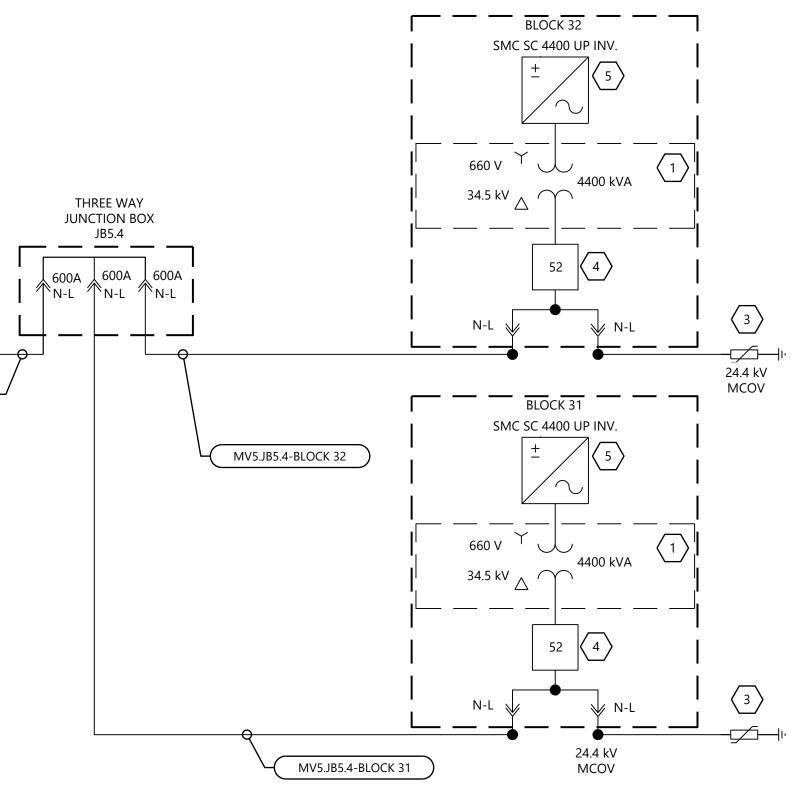
DATE:

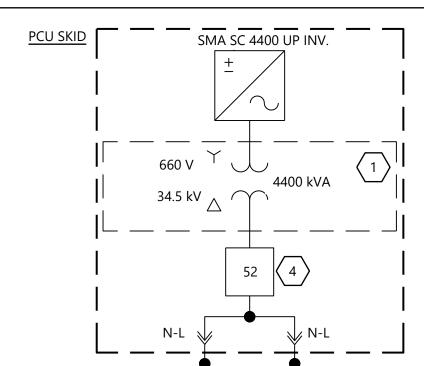
07/13/2023

SHEET:

		MVAC WIRING SCHEDULE											
CIRCUIT	CONDUCTOR LOCATION CODE	ORIGINATING EQUIPMENT	EQUIPMENT		lac (A)	LENGTH (FT)	CONDUCTOR SIZE	CONDUCTOR MATERIAL	# OF PARALLEL CIRCUITS	VOLTAGE DROP %	GROUND CONDUCTOR SIZE	GROUND CONDUCTOR MATERIAL	CONDUCTOR SPECIFICS
	MV5.SUB-JB5/1	SUB	JB5/1	34.5	368.17	1,496	1000	AL	1	0.0804%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV5.JB5/1-JB5/2	JB5/1	JB5/2	34.5	368.17	410	1000	AL	1	0.0229%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV5.JB5/2-JB5/3	JB5/2	JB5/3	34.5	368.17	3,185	1000	AL	1	0.1643%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV5.JB5/3-BLOCK26	JB5/3	BLOCK26	34.5	368.17	215	1000	AL	1	0.0130%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
5	MV5.BLOCK26-BLOCK25	BLOCK26	BLOCK25	34.5	294.53	590	750	AL	1	0.0328%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV5.JB5/3-BLOCK33	JB5/3	BLOCK33	34.5	220.90	3,035	500	AL	1	0.1722%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV5.BLOCK33-JB5/4	BLOCK33	JB5/4	34.5	147.27	505	4/0	AL	1	0.0450%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV5.JB5/4-BLOCK32	JB5/4	BLOCK32	34.5	73.63	416	4/0	AL	1	0.0189%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV5.JB5/4-BLOCK31	JB5/4	BLOCK31	34.5	73.63	2,644	4/0	AL	1	0.1110%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE

GENERAL NOTES


- WHERE REQUIRED.
- VOLTAGE SIDE OF TRANSFORMER WHERE SHOWN. 4. 48" BEND RADIUS MINIMUM FOR ALL MV CONDUIT BENDS.
- FROM OWNER. PROJECT BOUNDARY.


KEY NOTES

- $\left\langle 1 \right\rangle$ $\langle 2 \rangle$ 600A JUNCTION BOX.
- 3 BE BY OTHERS.

 $\langle 4 \rangle$ 38kV, 600A SWITCHGEAR.

LEGEND

1. STEP-UP TRANSFORMERS ARE OWNER FURNISHED AND INSTALLED BY MANUFACTURER WITHIN PCU STATION. PCU STATION DESIGNED AND ASSEMBLED BY OTHERS AND SHOWN FOR REFERENCE ONLY. 2. TRANSFORMER PRIMARY PROVIDED WITH 600A NON-LOAD (N-L) BREAK TERMINATIONS. CONTRACTOR TO PROVIDE LOAD-BREAK (L) REDUCING TAP BUSHINGS FOR LOAD-BREAK ELBOW CONNECTIONS

3. PROVIDE EXTERNAL SURGE ARRESTERS AT TRANSFORMERS, ELBOW CONNECTED ON THE HIGH

5. INSTALL ALL EQUIPMENT AND WIRING IN ACCORDANCE WITH THE NEC, NESC, AND ALL APPLICABLE REQUIREMENTS OF THE LOCAL UTILITY COMPANY AND LOCAL AUTHORITY HAVING JURISDICTION. 6. PLACEMENT OF JUNCTION BOXES AND SPLICES ARE APPROXIMATE AND WILL NEED TO BE MICROSITED BY CONSTRUCTION TEAM. MARKED LENGTHS SHOULD NOT DEVIATE MORE THAN 2,000 FEET FROM THE LOCATION MARKED. QUANTITIES SHOULD NOT DEVIATE FROM PLANSET WITHOUT APPROVAL

7. SPLICES TO BE INSTALLED 100' BACK FROM CROSSING EASEMENTS WHERE POSSIBLE AND KEPT WITHIN

4,400 KVA @ 25°C /3,960 KVA @ 50°C, 34500D/660Y V THREE-WINDING SKID MOUNTED STEP-UP TRANSFORMER. SUPPLIED BY MANUFACTURER AS PART OF 4,400 KVA @ 25°C/ 3,960 KVA @ 50°C SKID STATION. REFER TO MANUFACTURER-SUPPLIED DRAWINGS.

SURGE ARRESTER. COORDINATION WITH SUBSTATION SURGE ARRESTERS IS REQUIRED AND WILL

Middleton, WI 53562

westwoodps.com

Westwood Professional Services, Inc.

PREPARED FOR:

FREE STATE **SOLAR LLC.**

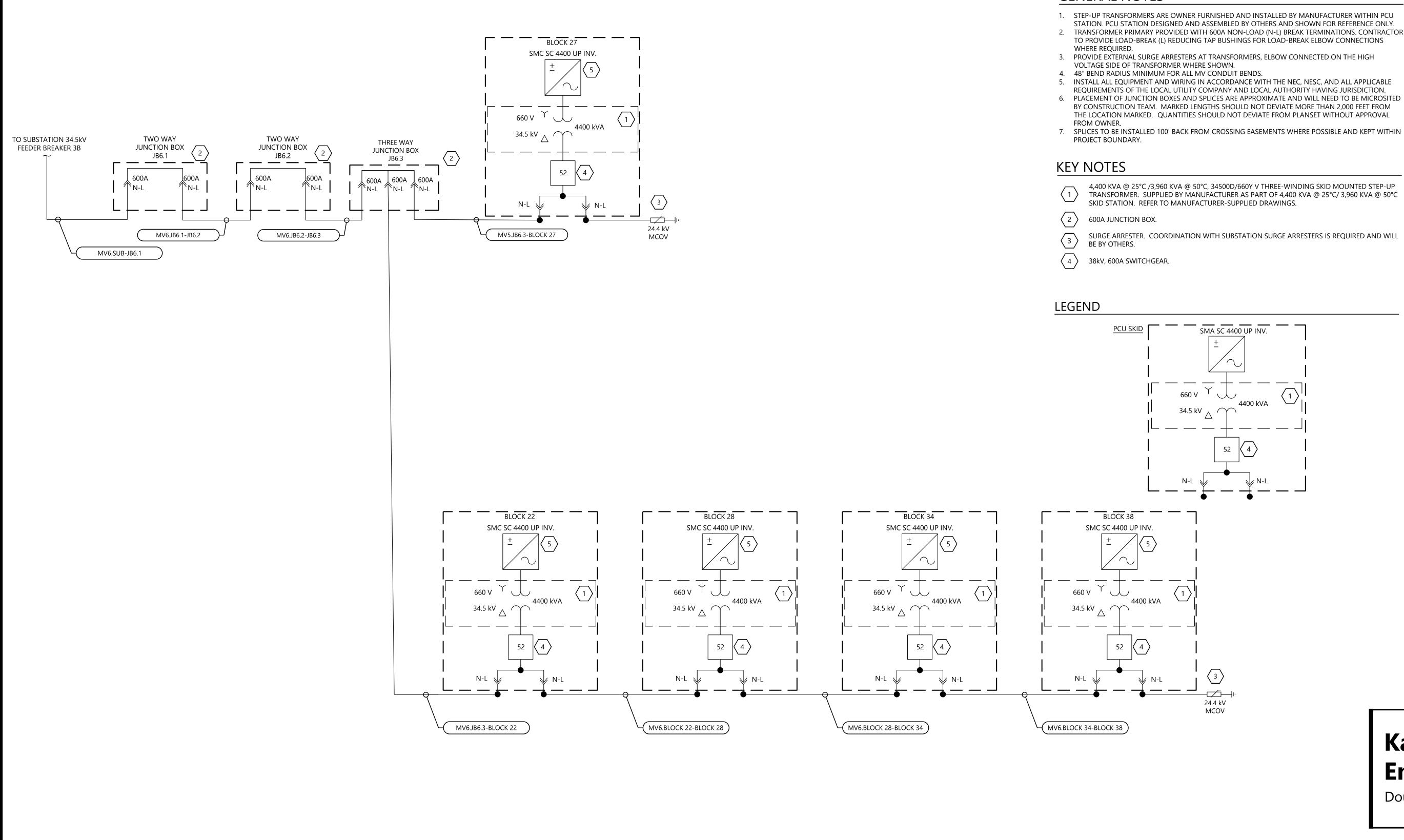
PREPARED FOR PROJECT NUMBER: 09100007

RE	VISIONS:			
#	DATE	COMMENT	BY	CHK APR
A	05/22/23	ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
В	06/16/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
С	07/13/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME

Kansas Sky **Energy Center**

Douglas County, Kansas

MVAC Single Line Diagram - Circuit 5


NOT FOR CONSTRUCTION

DATE:

07/13/2023

REV:

SHEET:

								MVAC W	IRING SC				
CIRCUIT	CONDUCTOR LOCATION CODE	ORIGINATING EQUIPMENT	TERMINATING F EQUIPMENT	RATED Vac (kV)	lac (A)	LENGTH (FT)	CONDUCTOR SIZE	CONDUCTOR MATERIAL	# OF PARALLEL CIRCUITS	VOLTAGE DROP %	GROUND CONDUCTOR SIZE	GROUND CONDUCTOR MATERIAL	CONDUCTOR SPECIFICS
	MV6.SUB-JB6/1	SUB	JB6/1	34.5	368.17	1,502	1000	AL	1	0.0807%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV6.JB6/1-JB6/2	JB6/1	JB6/2	34.5	368.17	400	1000	AL	1	0.0224%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV6.JB6/2-JB6/3	JB6/2	JB6/3	34.5	368.17	195	1000	AL	1	0.0120%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
6	MV6.JB6/3-BLOCK27	JB6/3	BLOCK27	34.5	73.63	2,789	4/0	AL	1	0.1170%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV6.JB6/3-BLOCK22	JB6/3	BLOCK22	34.5	294.53	1,083	750	AL	1	0.0584%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV6.BLOCK22-BLOCK28	BLOCK22	BLOCK28	34.5	220.90	1,087	500	AL	1	0.0631%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV6.BLOCK28-BLOCK34	BLOCK28	BLOCK34	34.5	147.27	1,848	4/0	AL	1	0.1562%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV6.BLOCK34-BLOCK38	BLOCK34	BLOCK38	34.5	73.63	1,122	4/0	AL	1	0.0481%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE

$\langle 1 \rangle$	4,400 KVA @ 25°C /3,960 KVA TRANSFORMER. SUPPLIED BY SKID STATION. REFER TO MA
$\langle 2 \rangle$	600A JUNCTION BOX.
$\langle 3 \rangle$	SURGE ARRESTER. COORDINA BE BY OTHERS.
$\left\langle A \right\rangle$	38kV. 600A SWITCHGEAR

A @ 50°C, 34500D/660Y V THREE-WINDING SKID MOUNTED STEP-UP BY MANUFACTURER AS PART OF 4,400 KVA @ 25°C/ 3,960 KVA @ 50°C

NATION WITH SUBSTATION SURGE ARRESTERS IS REQUIRED AND WILL

westwoodps.com

Westwood Professional Services, Inc.

PREPARED FOR:

FREE STATE **SOLAR LLC.**

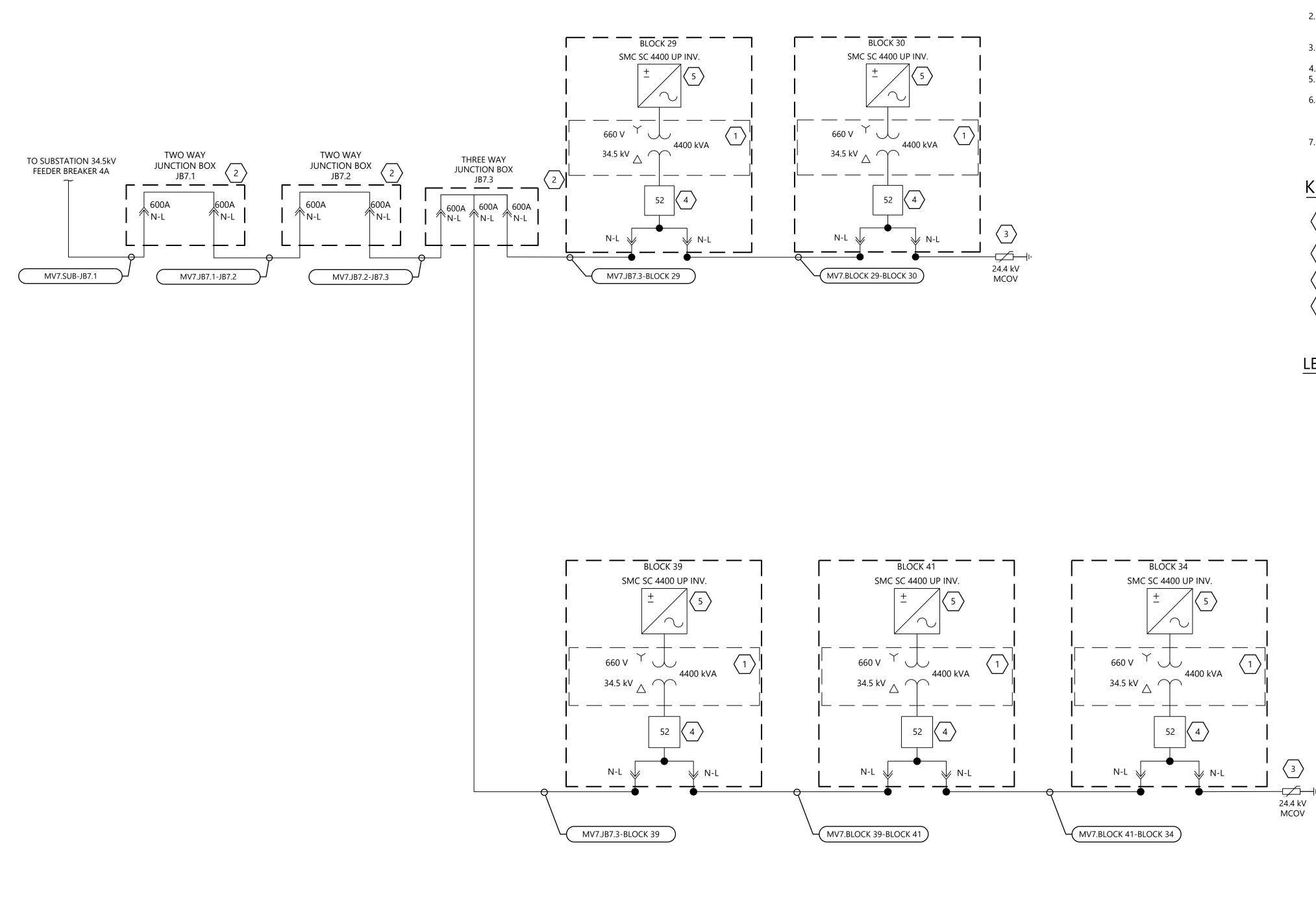
PREPARED FOR PROJECT NUMBER: 09100007

RE	VISIONS:			
#	DATE	COMMENT	BY	CHK APR
А	05/22/23	ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
В	06/16/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
С	07/13/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME

Kansas Sky **Energy Center**

Douglas County, Kansas

MVAC Single Line Diagram - Circuit 6

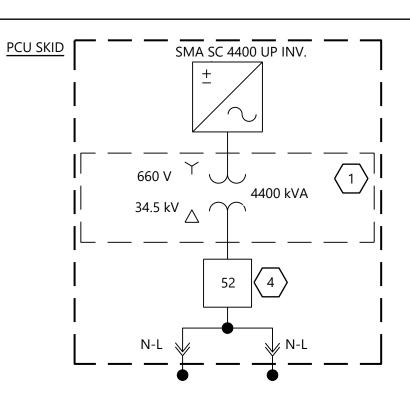

NOT FOR CONSTRUCTION

DATE:

07/13/2023

SHEET:

								MVAC W	/IRING SC	HEDULE			
CIRCUIT	CONDUCTOR LOCATION CODE	ORIGINATING EQUIPMENT		1	lac (A)	LENGTH (FT)	CONDUCTOR SIZE	CONDUCTOR MATERIAL	# OF PARALLEL CIRCUITS	VOLTAGE DROP %	GROUND CONDUCTOR SIZE	GROUND CONDUCTOR MATERIAL	CONDUCTOR SPECIFICS
	MV7.SUB-JB7/1	SUB	JB7/1	34.5	368.17	1,527	1000	AL	1	0.0820%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV7.JB7/1-JB7/2	JB7/1	JB7/2	34.5	368.17	390	1000	AL	1	0.0219%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV7.JB7/2-JB7/3	JB7/2	JB7/3	34.5	368.17	2,196	1000	AL	1	0.1139%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
7	MV7.JB7/3-BLOCK29	JB7/3	BLOCK29	34.5	147.27	552	4/0	AL	1	0.0490%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
/	MV7.BLOCK29-BLOCK30	BLOCK29	BLOCK30	34.5	73.63	1,425	4/0	AL	1	0.0606%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV7.JB7/3-BLOCK39	JB7/3	BLOCK39	34.5	220.90	2,893	500	AL	1	0.1643%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV7.BLOCK39-BLOCK41	BLOCK39	BLOCK41	34.5	147.27	2,078	4/0	AL	1	0.1752%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV7.BLOCK41-BLOCK40	BLOCK41	BLOCK40	34.5	73.63	1,235	4/0	AL	1	0.0527%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE


GENERAL NOTES

- WHERE REQUIRED.
- VOLTAGE SIDE OF TRANSFORMER WHERE SHOWN. 4. 48" BEND RADIUS MINIMUM FOR ALL MV CONDUIT BENDS.
- 5.
- FROM OWNER.
- PROJECT BOUNDARY.

KEY NOTES

 $\langle 1 \rangle$ 600A JUNCTION BOX. (2) (3) BE BY OTHERS. $\langle 4 \rangle$ 38kV, 600A SWITCHGEAR.

LEGEND

1. STEP-UP TRANSFORMERS ARE OWNER FURNISHED AND INSTALLED BY MANUFACTURER WITHIN PCU STATION. PCU STATION DESIGNED AND ASSEMBLED BY OTHERS AND SHOWN FOR REFERENCE ONLY. TRANSFORMER PRIMARY PROVIDED WITH 600A NON-LOAD (N-L) BREAK TERMINATIONS. CONTRACTOR TO PROVIDE LOAD-BREAK (L) REDUCING TAP BUSHINGS FOR LOAD-BREAK ELBOW CONNECTIONS

3. PROVIDE EXTERNAL SURGE ARRESTERS AT TRANSFORMERS, ELBOW CONNECTED ON THE HIGH

INSTALL ALL EQUIPMENT AND WIRING IN ACCORDANCE WITH THE NEC, NESC, AND ALL APPLICABLE REQUIREMENTS OF THE LOCAL UTILITY COMPANY AND LOCAL AUTHORITY HAVING JURISDICTION. 6. PLACEMENT OF JUNCTION BOXES AND SPLICES ARE APPROXIMATE AND WILL NEED TO BE MICROSITED BY CONSTRUCTION TEAM. MARKED LENGTHS SHOULD NOT DEVIATE MORE THAN 2,000 FEET FROM THE LOCATION MARKED. QUANTITIES SHOULD NOT DEVIATE FROM PLANSET WITHOUT APPROVAL

7. SPLICES TO BE INSTALLED 100' BACK FROM CROSSING EASEMENTS WHERE POSSIBLE AND KEPT WITHIN

4,400 KVA @ 25°C /3,960 KVA @ 50°C, 34500D/660Y V THREE-WINDING SKID MOUNTED STEP-UP TRANSFORMER. SUPPLIED BY MANUFACTURER AS PART OF 4,400 KVA @ 25°C/ 3,960 KVA @ 50°C SKID STATION. REFER TO MANUFACTURER-SUPPLIED DRAWINGS.

SURGE ARRESTER. COORDINATION WITH SUBSTATION SURGE ARRESTERS IS REQUIRED AND WILL

Westwood Professional Services, Inc.

PREPARED FOR:

FREE STATE **SOLAR LLC.**

PREPARED FOR PROJECT NUMBER: 09100007

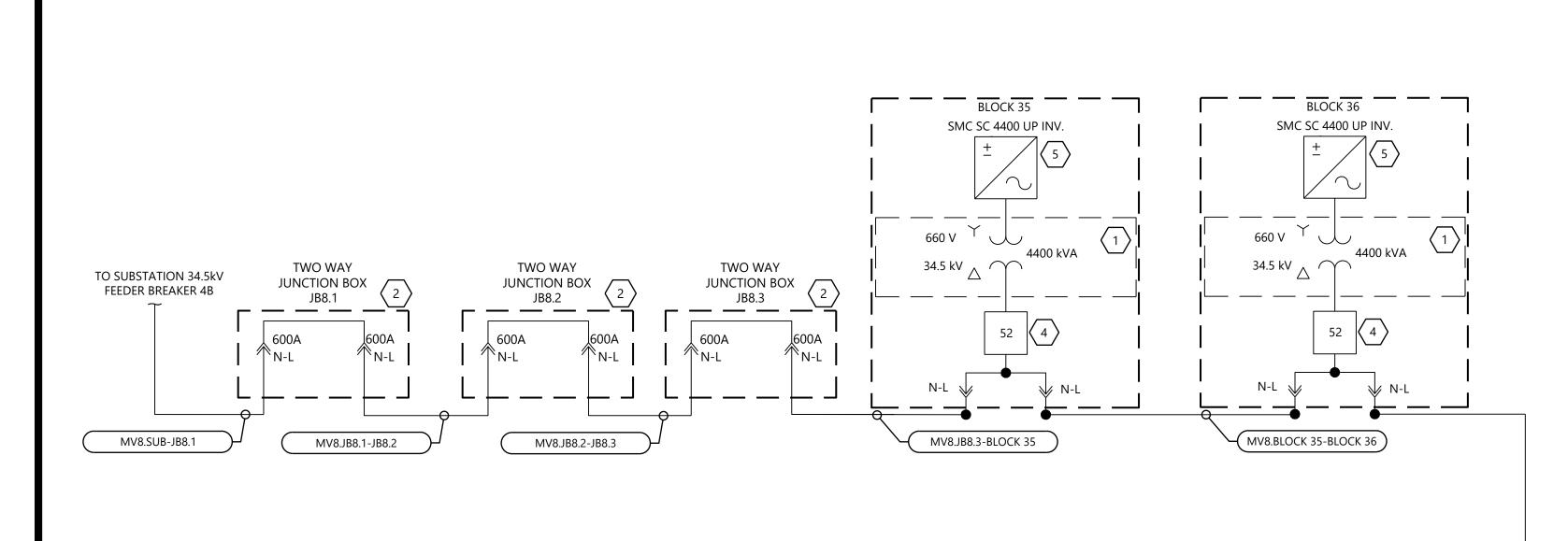
RE	VISIONS:			
#	DATE	COMMENT	BY	CHK APR
A	05/22/23	ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
В	06/16/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
С	07/13/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME

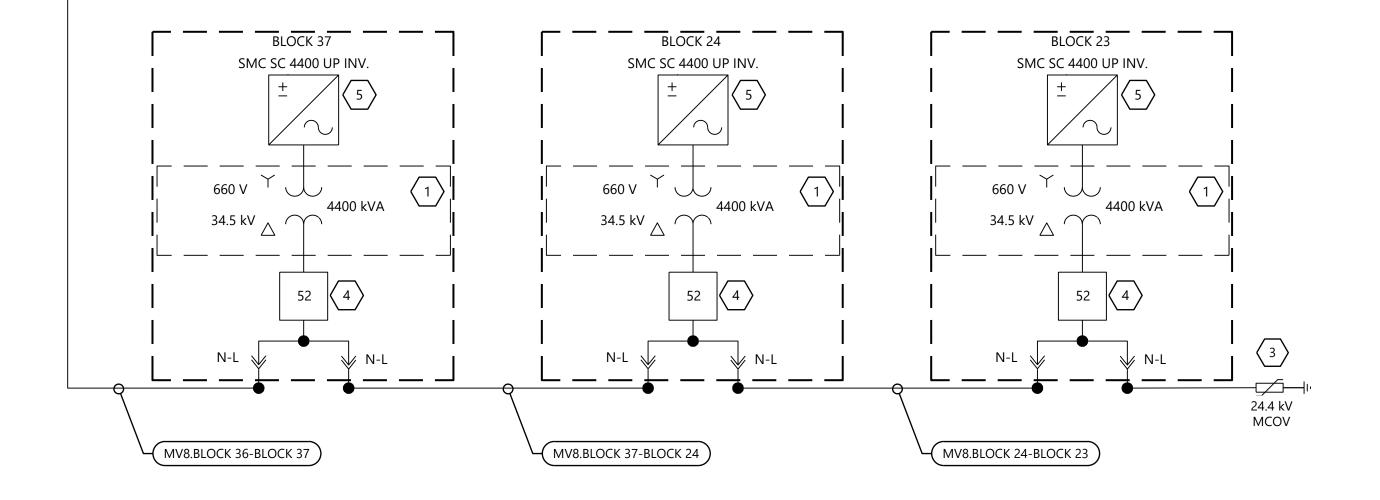
Kansas Sky **Energy Center**

Douglas County, Kansas

MVAC Single Line Diagram - Circuit 7

NOT FOR CONSTRUCTION

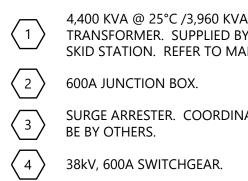

DATE:


07/13/2023

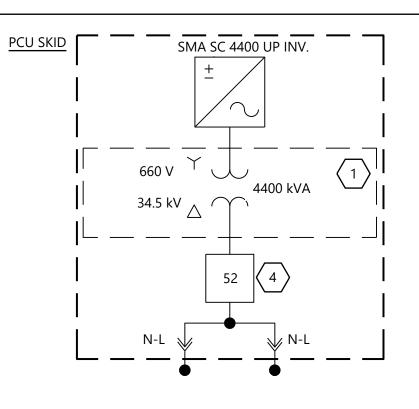
SHEET:

E1306

REV:


								MVAC W	/IRING SC	HEDULE			
CIRCUIT	CONDUCTOR LOCATION CODE	ORIGINATING EQUIPMENT			lac (A)	LENGTH (FT)	CONDUCTOF SIZE	CONDUCTOR MATERIAL	# OF PARALLEL CIRCUITS	VOLTAGE DROP %	GROUND CONDUCTOR SIZE	GROUND CONDUCTOR MATERIAL	CONDUCTOR SPECIFICS
	MV8.SUB-JB8/1	SUB	JB8/1	34.5	368.17	1,534	1000	AL	1	0.0823%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV8.JB8/1-JB8/2	JB8/1	JB8/2	34.5	368.17	380	1000	AL	1	0.0214%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV8.JB8/2-JB8/3	JB8/2	JB8/3	34.5	368.17	5,182	1000	AL	1	0.2661%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
Q	MV8.JB8/3-BLOCK35	JB8/3	BLOCK35	34.5	368.17	1,017	1000	AL	1	0.0539%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
0	MV8.BLOCK35-BLOCK36	BLOCK35	BLOCK36	34.5	294.53	460	750	AL	1	0.0260%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV8.BLOCK36-BLOCK37	BLOCK36	BLOCK37	34.5	220.90	439	500	AL	1	0.0268%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV8.BLOCK37-BLOCK24	BLOCK37	BLOCK24	34.5	147.27	1,844	4/0	AL	1	0.1558%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE
	MV8.BLOCK24-BLOCK23	BLOCK24	BLOCK23	34.5	73.63	459	4/0	AL	1	0.0206%	1-7#8	CCS (40%)	35KV, 1/C, Triplex, 100 % Insulation, Type MV-105, 14 x #14 CN, XLPE

GENERAL NOTES


- WHERE REQUIRED.
- VOLTAGE SIDE OF TRANSFORMER WHERE SHOWN. 4. 48" BEND RADIUS MINIMUM FOR ALL MV CONDUIT BENDS.

- FROM OWNER. PROJECT BOUNDARY.

KEY NOTES

LEGEND

1. STEP-UP TRANSFORMERS ARE OWNER FURNISHED AND INSTALLED BY MANUFACTURER WITHIN PCU STATION. PCU STATION DESIGNED AND ASSEMBLED BY OTHERS AND SHOWN FOR REFERENCE ONLY. 2. TRANSFORMER PRIMARY PROVIDED WITH 600A NON-LOAD (N-L) BREAK TERMINATIONS. CONTRACTOR TO PROVIDE LOAD-BREAK (L) REDUCING TAP BUSHINGS FOR LOAD-BREAK ELBOW CONNECTIONS

3. PROVIDE EXTERNAL SURGE ARRESTERS AT TRANSFORMERS, ELBOW CONNECTED ON THE HIGH

5. INSTALL ALL EQUIPMENT AND WIRING IN ACCORDANCE WITH THE NEC, NESC, AND ALL APPLICABLE REQUIREMENTS OF THE LOCAL UTILITY COMPANY AND LOCAL AUTHORITY HAVING JURISDICTION. 6. PLACEMENT OF JUNCTION BOXES AND SPLICES ARE APPROXIMATE AND WILL NEED TO BE MICROSITED BY CONSTRUCTION TEAM. MARKED LENGTHS SHOULD NOT DEVIATE MORE THAN 2,000 FEET FROM THE LOCATION MARKED. QUANTITIES SHOULD NOT DEVIATE FROM PLANSET WITHOUT APPROVAL

7. SPLICES TO BE INSTALLED 100' BACK FROM CROSSING EASEMENTS WHERE POSSIBLE AND KEPT WITHIN

4,400 KVA @ 25°C /3,960 KVA @ 50°C, 34500D/660Y V THREE-WINDING SKID MOUNTED STEP-UP TRANSFORMER. SUPPLIED BY MANUFACTURER AS PART OF 4,400 KVA @ 25°C/ 3,960 KVA @ 50°C SKID STATION. REFER TO MANUFACTURER-SUPPLIED DRAWINGS.

SURGE ARRESTER. COORDINATION WITH SUBSTATION SURGE ARRESTERS IS REQUIRED AND WILL

westwoodps.com

Westwood Professional Services, Inc.

PREPARED FOR:

FREE STATE **SOLAR LLC.**

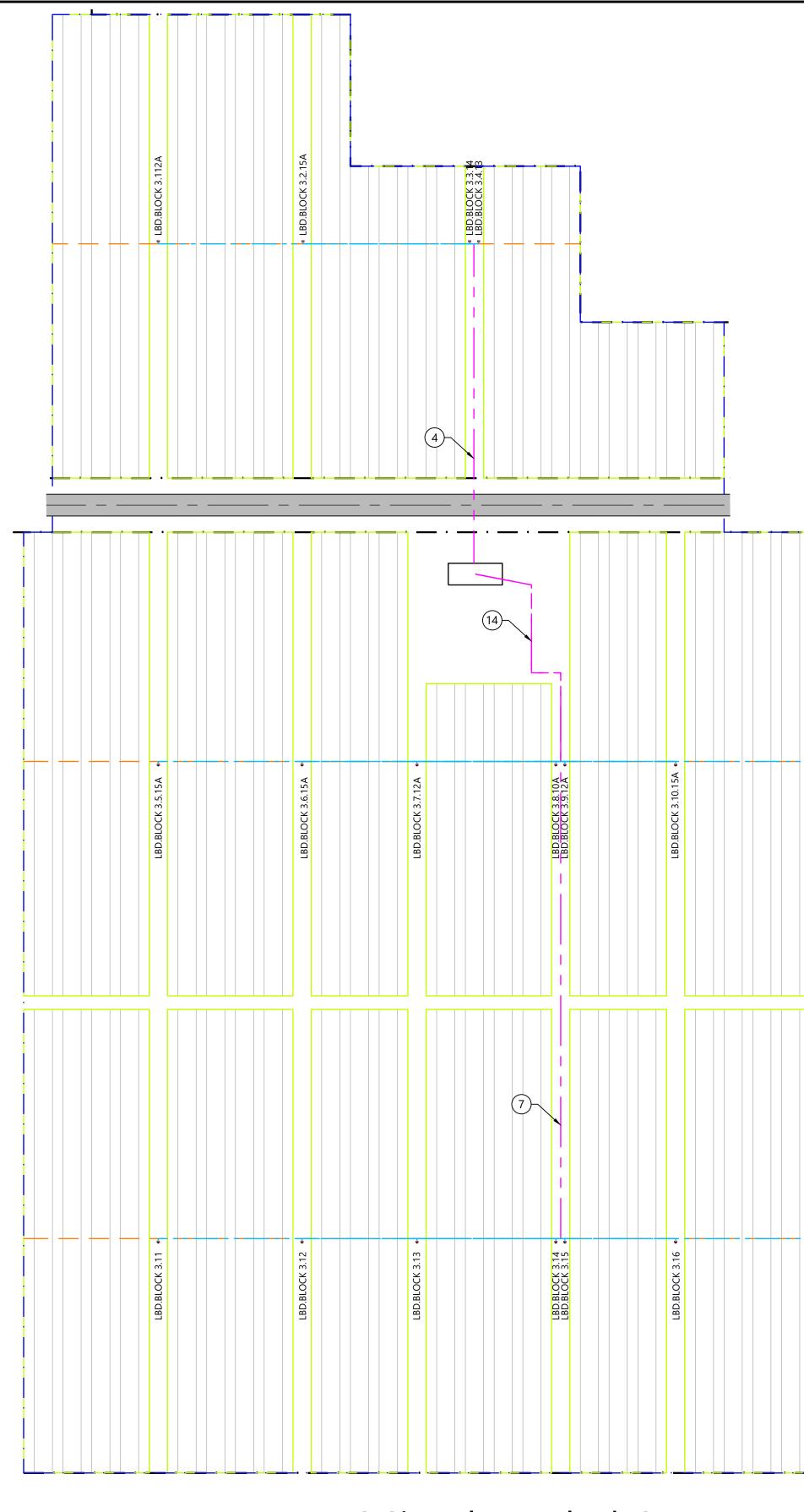
PREPARED FOR PROJECT NUMBER: 09100007

REVISIONS: # DATE COMMENT BY CHK APR A 05/22/23 ISSUED FOR 30% DESIGN REVIEW GH WMEWME B 06/16/23 RE-ISSUED FOR 30% DESIGN REVIEW GH WME WME C 07/13/23 RE-ISSUED FOR 30% DESIGN REVIEW GH WME WME

Kansas Sky **Energy Center**

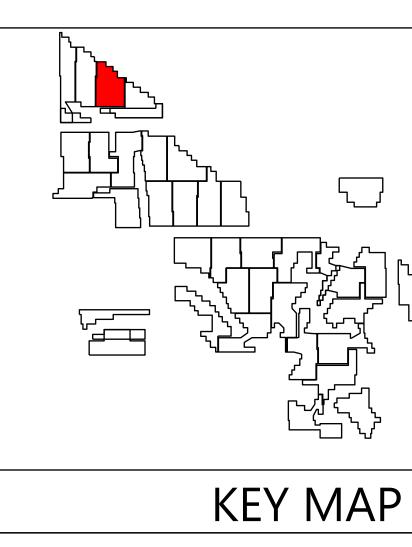
Douglas County, Kansas

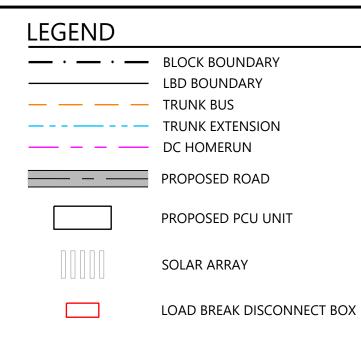
MVAC Single Line Diagram - Circuit 8


NOT FOR CONSTRUCTION

DATE:

07/13/2023 E1307

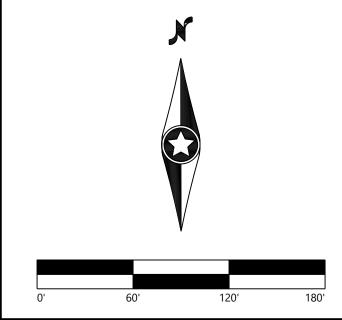

REV:


SHEET:

DC Site Plan - Block 3 1"=60'

LBD.BLOCK 3.11.15A •					
 LBD.BLOCK 3.17 *			_	_	

Westwood Phone (608) 821-6600 8401 Greenway Blvd., Suite 400 Middleton, WI 53562 westwoodps.com


Westwood Professional Services, Inc.

PREPARED FOR:

FREE STATE **SOLAR LLC.**

PREPARED FOR PROJECT NUMBER: 09100007

RE	VISIONS:			
#	DATE	COMMENT	BY	CHK APR
A	05/22/23	ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
В	06/16/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
С	07/13/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME

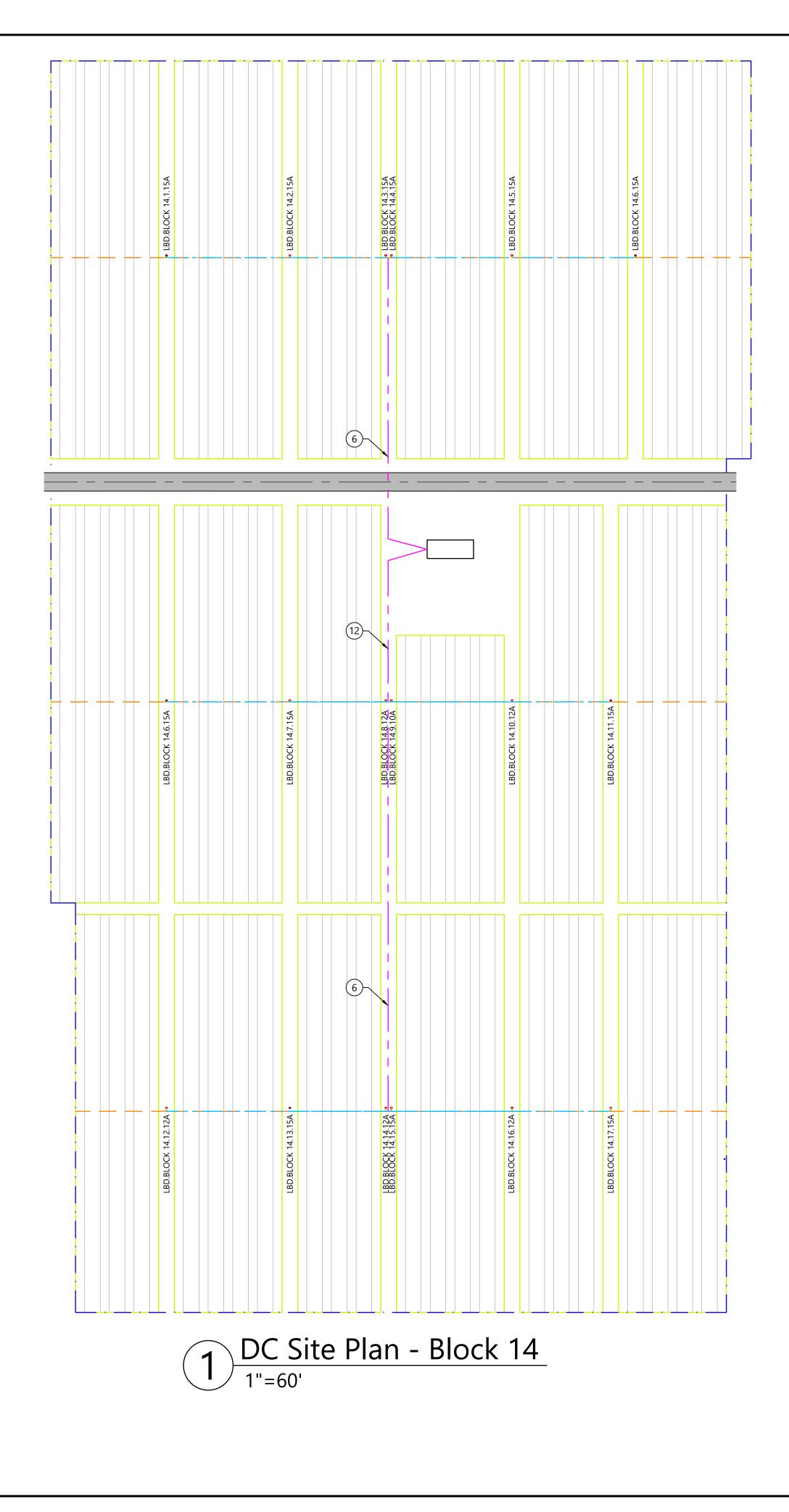
Kansas Sky **Energy Center** Douglas County, Kansas

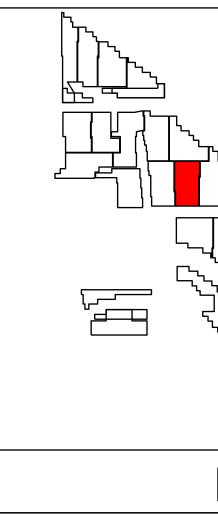
DC Site Plan - Block 3

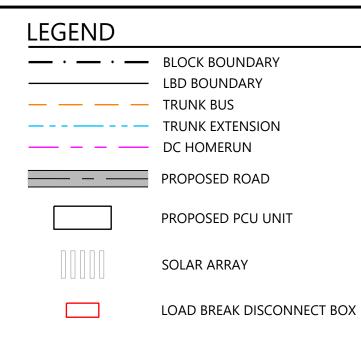
NOT FOR CONSTRUCTION

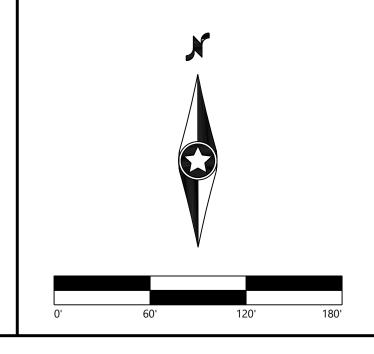
DATE:

07/13/2023 E2000


REV:


С


SHEET:


Westwood Professional Services, Inc.

PREPARED FOR:

FREE STATE SOLAR LLC.

PREPARED FOR PROJECT NUMBER: 09100007

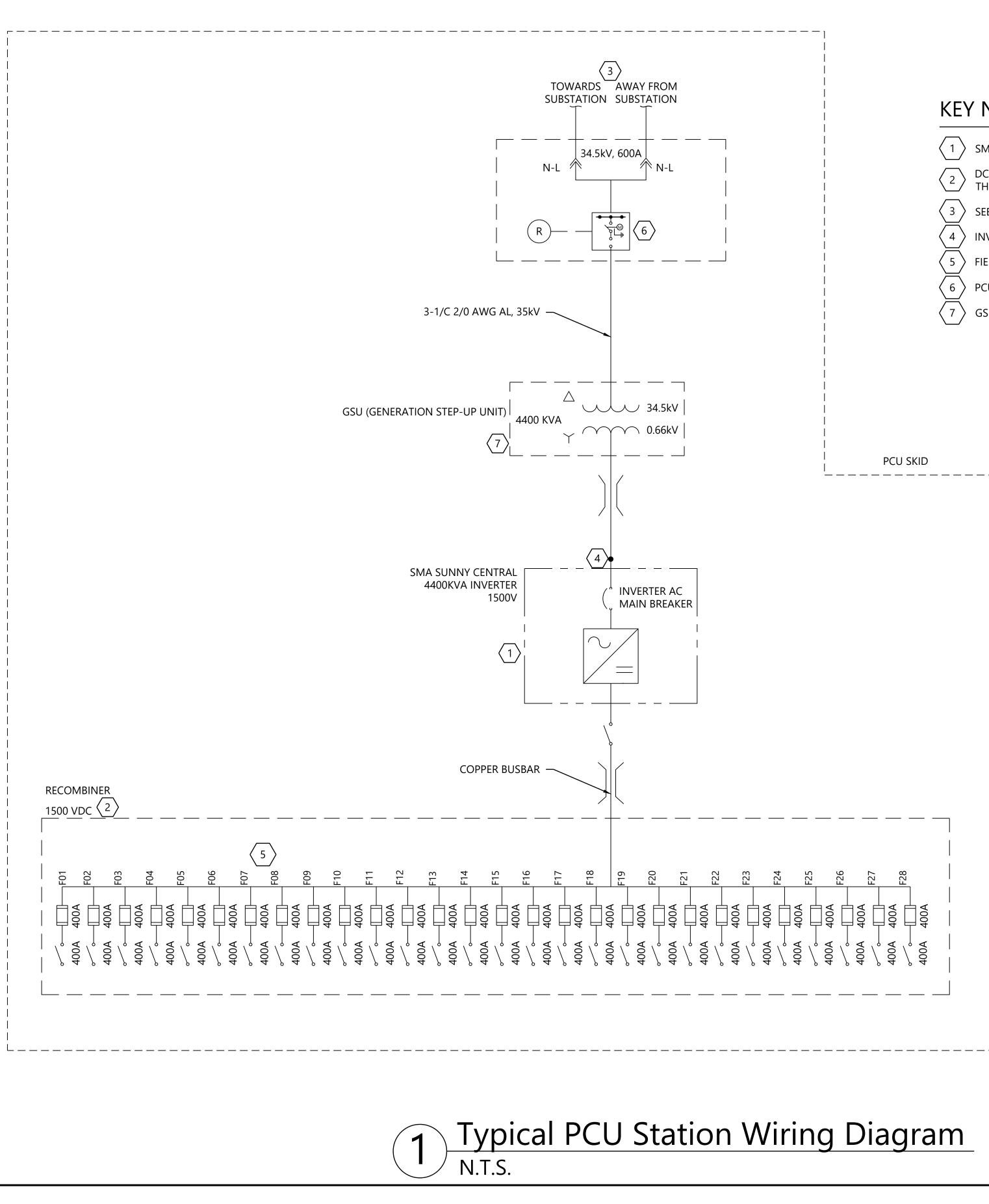
RE	VISIONS:			
#	DATE	COMMENT	BY	CHK APR
A	05/22/23	ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
В	06/16/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
С	07/13/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME

Kansas Sky **Energy Center** Douglas County, Kansas

DC Site Plan - Block 14

NOT FOR CONSTRUCTION

DATE:


07/13/2023

SHEET:

E2002

KEY MAP

NOTES

- 1. INVERTER STATION DESIGNED AND ASSEMBLED BY OTHERS AND SHOWN FOR REFERENCE ONLY. WESTWOOD PROFESSIONAL SERVICES NOT RESPONSIBLE FOR INVERTER STATION DESIGN CONFORMING TO NEC OR ANY OTHER APPLICABLE LOCAL, STATE OR NATIONAL RECOGNIZED CODES OR REGULATIONS.
- CONTRACTOR TO PROVIDE AND INSTALL WIRING AND EQUIPMENT EXTERNAL TO THE INVERTER STATION AS SHOWN.
- SEE SHEETS E0020 & E0040 FOR SYMBOLOGY, ABBREVIATIONS AND LABELING REQUIREMENTS. 4. AUX RACK AND SCADA WIRING CONNECTIONS IS PENDING CONFIRMATION FROM INVERTER MANUFACTURER.

KEY NOTES

- SMA SC4400UP 4,400kVA @ 35° C; 3960KVA @50° C
- DC INVERTER RECOMBINER BOX 1500VDC. SEE SHEET E3200 FOR TYPICAL RECOMBINER SINGLE LINE DIAGRAM. SEE WIRING SCHEDULES ON SHEETS E3500 THROUGH E3510 FOR QUANTITY AND SIZE OF FEEDERS AND FUSES. FUSE SIZES PROVIDED BY INVERTER MANUFACTURER.
- SEE SHEETS E1300 THROUGH E1301 MVAC ONELINE DIAGRAMS FOR CONTINUATION.
- INVERTER AC BUS.
- FIELD TECHNICIAN TO RECORD THE FUSE LOCATION AT TIME OF INSTALL.
- PCU SWITCHGEAR, 38kV, 600A W/ 20kA INTERUPT
- GSU (GENERATION STEP-UP UNIT) 4400kVA, 34.5/0.66kV, KNAN, DY11

Westwo Phone (608) 821-6600 8401 Greenwav Blvd., Suite Middleton, WI 53562

westwoodps.com

Westwood Professional Services, Inc.

PREPARED FOR:

FREE STATE **SOLAR LLC.**

PREPARED FOR PROJECT NUMBER: 09100007

RE	VISIONS:			
#	DATE	COMMENT	BY	CHK APR
A	05/22/23	ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
В	06/16/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
С	07/13/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME

Kansas Sky **Energy Center**

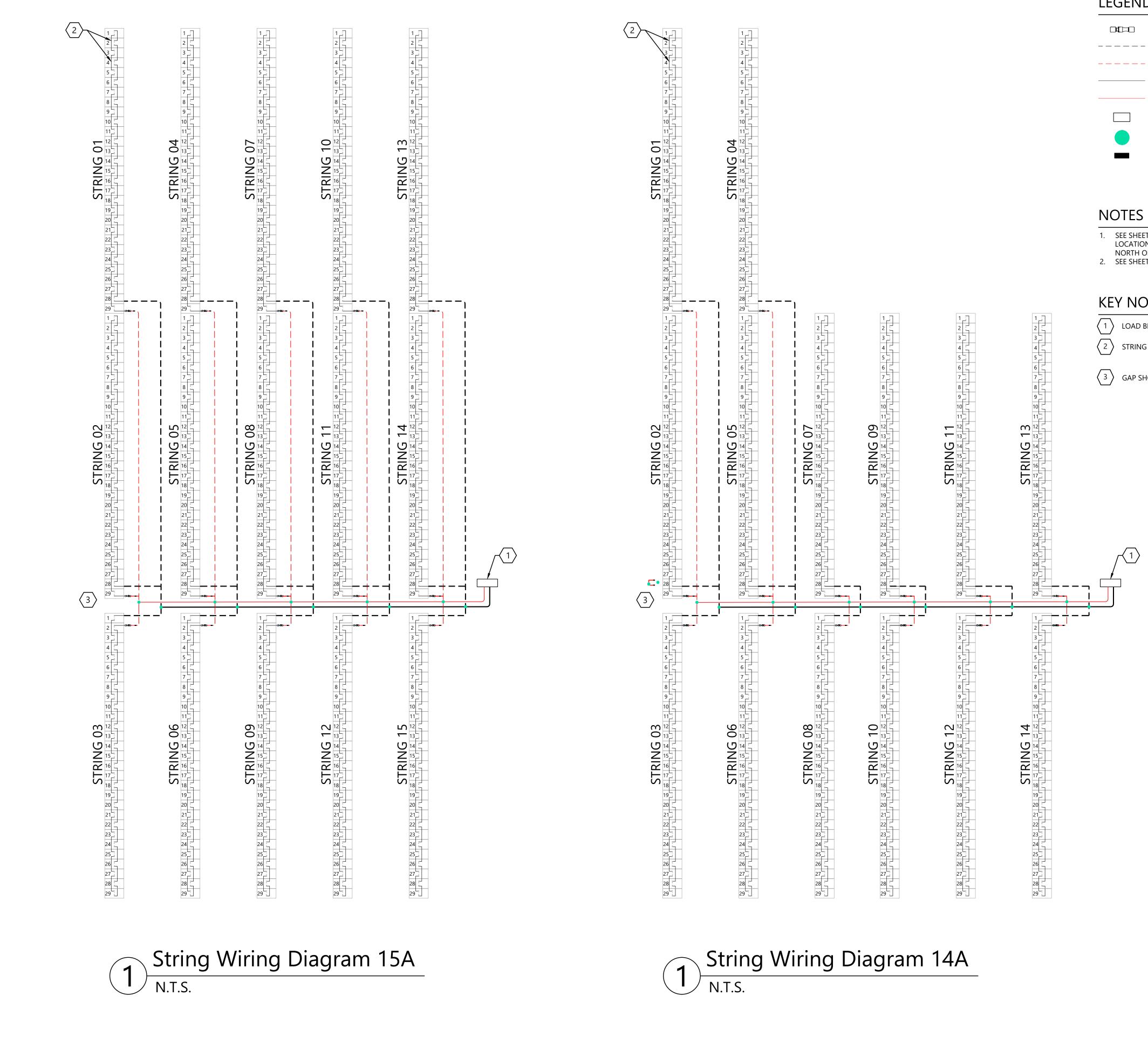
Douglas County, Kansas

Inverter Collection Line Diagram

NOT FOR CONSTRUCTION

DATE:

07/13/2023


SHEET:

LBD Number 1 (NOTE 1)	 SINGLE PCU RE TO ENS WITHIN SEE SHI MESSEN DC TRE DIAGRA TO BE F INSTAL ENTERIN
LBD Number 2 (NOTE 1)	TO BE F INSTAL
	LEGE
LBD Number 3 (NOTE 1)	 400A
	COMBINER CABINET
LBD Number 4 (NOTE 1)	LBD NUMBER 05 LBD NUMBER 06 LBD NUMBER 07
LBD Number 5 (NOTE 1)	
LBD Number 6 (NOTE 1) I <td< td=""><td></td></td<>	
LBD Number 7 (NOTE 1) Image: Second seco	
LBD Number 8 (NOTE 1)	
LBD Number 9 (NOTE 1)	
LBD Number 10 (NOTE 1)	
LBD Number 11 (NOTE 1)	
LBD Number 12 (NOTE 1)	
LBD Number 13 (NOTE 1)	
LBD Number 14 (NOTE 1)	

), CAD_Electrical\E2300 DC Levell II One Line Diagrams.dwg 7/13/2023 4:10 PM G

				S TYP CABIN								TOT	ΤΑΙ	TFF	MIN	ηΔτ		S. C	ON-	TRA	СТО	۶R																	ſ	LB	D Num	per 15	(NOT
NS HIN HE SEN RE	SURE N THE EET E NGER NCH	CAE REC 230 SIZ GRC	BLE T COM 0 FC 2E OF OUN	ferm Abine Dr Ty F 3/8' Iding	INA ⁻ ER BO PICA ' EH! G SIZ	TION OX. AL IN S STI ZE OI	NS (L IVER EEL F 3A	JP TO TER MES WG	O 32 WIF SEN CU.	2) AF RING IGER	RE A 5.	.S E∨	/EN	LY C	DIST	RIB	UTEI	D AS	5 PC	SSI	BLE												 				 						
e f Ali	ROUT	ed . Dn i	to f Need	GENEI RECO DS. D	MBII	NER	INP	UT N	NUN	1BER	X II	F AN	IOT	HEF	IN	PUT	FAC	CILIT	ATE	S		D											 	Γ			 			LB	3D Num	per 16	(NOT
E)		- 6	00 k	CMI	L AL	., UL	470 ⁻	1 PV	í (Dil	REC	T BL	JRIE	:D) [DC H	HON	1ERI	UN (NDU		DR																				
	~-[] A 4			4	00A	DIS	CON	INEC	CT S'	WITO	СН /	AND) FO	ir fi	USE	SIZ	e re	FER	TO	TAE	3le i	BELO	WC										 		ſ		 			LB	3D Num	oer 17	(NOT
T									т	0:_PC	-11																													LB	BD Num	per 18	(NOT
	LBD NUMBER 08	LBD NUMBER 09		LBD NUMBER 10	LBD NUMBER 11		LBD NUMBER 12	LBD NUMBER 13		\uparrow	LBD NUMBER 28		LBU NUMBER 21	I BD NUMBER 26		LBD NUMBER 25		LBU NUMBEK 24	LBD NUMBER 23		LBD NUMBER 22	LBD NUMBER 21		LBD NUMBER 20		LBD NUMBER 18		LBD NUMBER 16	LBD NUMBER 15				 				 						(1).01
400A 400A				400A 400A																													 			 	-			LB	3D Num	ber 19	(NO1
	 						 			 			 			 		 			- 	-+]] 	 		 		[LB	3D Num	oer 20	(NOT
				 			 			 			 					 			 _			 	 			 	 	 			 			 	 	 	_	LB	3D Num	per 21	(NOT
	 	']			 			 L						'_ ·						 		·	 	 	 		 	 	 · 		 	 _ 	 L	_	LB	D Num	oer 22	(NOT
				. <u> </u>																					 			 	 	 			 			 	 		[LB	D Num	oer 23	(NOT
																																				 	 			LB	D Num	oer 24	(NOT
																																					 			LBI	D Numt	oer 25	(NOT
																																	 	 _			 			LB	3D Numl	oer 26	(NOT
																																	 				 			LB	3D Numl	oer 27	(NOT
																															 L						 		[LB	3D Num	oer 28	(NOT

	Westwood
OTE 1)	Phone (608) 821-6600 8401 Greenway Blvd., Suite 400 Middleton, WI 53562 westwoodps.com Westwood Professional Services, Inc.
OTE 1)	
OTE 1)	
	PREPARED FOR: FREE STATE
OTE 1)	SOLAR LLC.
OTE 1)	PREPARED FOR PROJECT NUMBER: 09100007
OTE 1)	REVISIONS: # DATE COMMENT BY CHK APR A 05/22/23 ISSUED FOR 30% DESIGN REVIEW GH WMEWME
OTE 1)	B 06/16/23 RE-ISSUED FOR 30% DESIGN REVIEW GH WMEWME C 07/13/23 RE-ISSUED FOR 30% DESIGN REVIEW GH WMEWME
OTE 1)	
OTE 1)	
OTE 1)	
DTE 1)	Kansas Sky
OTE 1)	Energy Center Douglas County, Kansas
OTE 1)	DC Level II Single Line Diagram
OTE 1)	NOT FOR CONSTRUCTION DATE: 07/13/2023 REV:
	SHEET: E2301 C

LEGEND

·	

FUSE
PV MODULE CONNECTOR (NEG -)
PV MODULE CONNECTOR (POS +)
500 KCMIL PV TRUNK CONDUCTOR (NEG -)
500 KCMIL PV TRUNK CONDUCTOR (POS +)
LBD
SHOALS BLA HARNESS

INLINE FUSE

- 1. SEE SHEET E2000 THRU E2001 FOR DC SITE PLANS AND LOCATIONS OF LBD BLOCKS. LBDs SHALL ALWAYS BE
- NORTH OF CAB MESSENGER WIRE.
- 2. SEE SHEET E2300 FOR DC LEVEL II SLD.

KEY NOTES

1	LOAD BREAK DISCONNECT
---	-----------------------

 $\langle 2 \rangle$ STRING (STR) WIRING. TYPICAL.

 $\langle 3 \rangle$ GAP SHOWN FOR CAB AND MESSENGER WIRE.

Westwood (608) 821-6600 Phone 8401 Greenway Blvd., Suite 400

Middleton, WI 53562 westwoodps.com Westwood Professional Services, Inc.

PREPARED FOR:

FREE STATE **SOLAR LLC.**

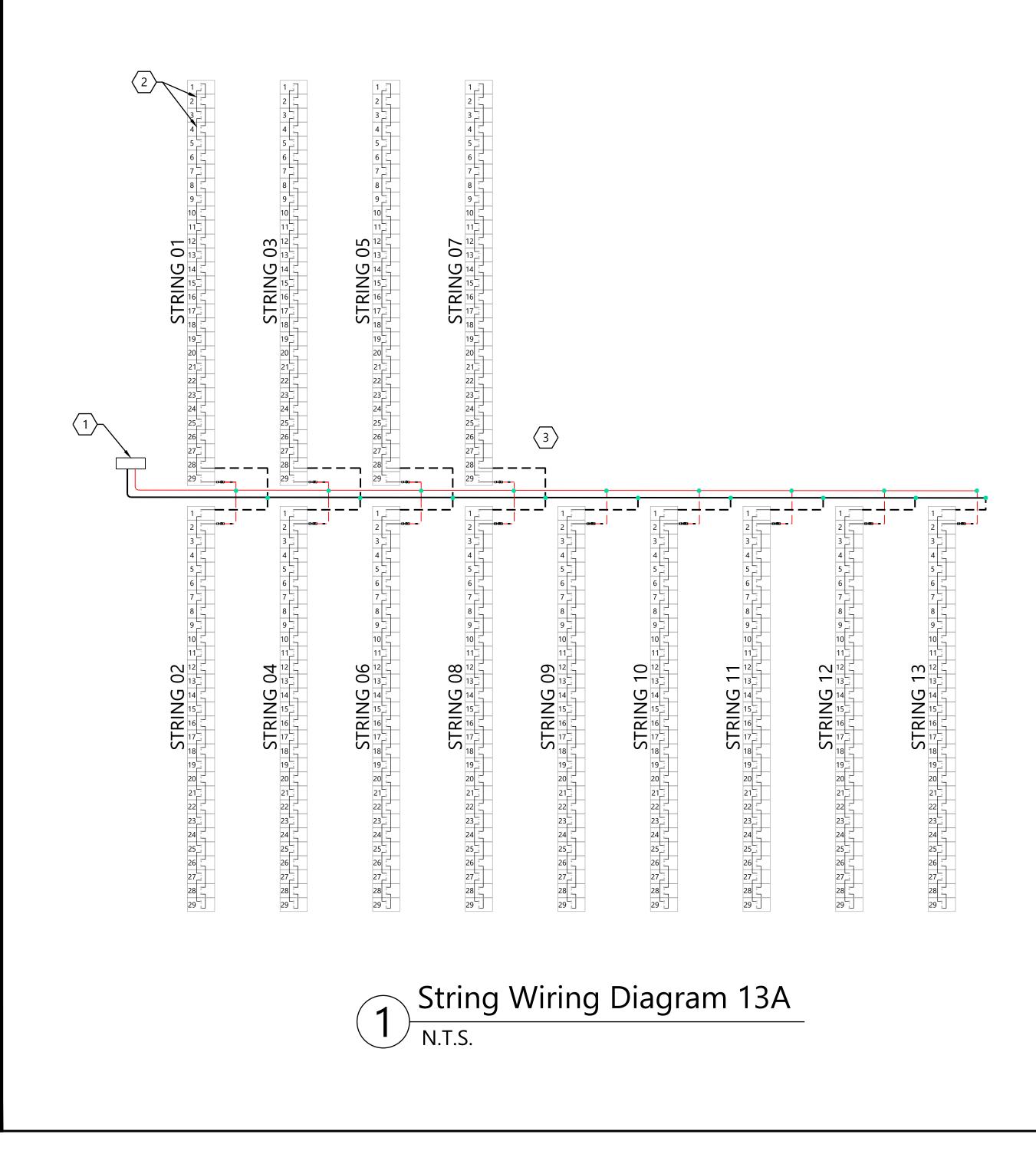
PREPARED FOR PROJECT NUMBER: 09100007

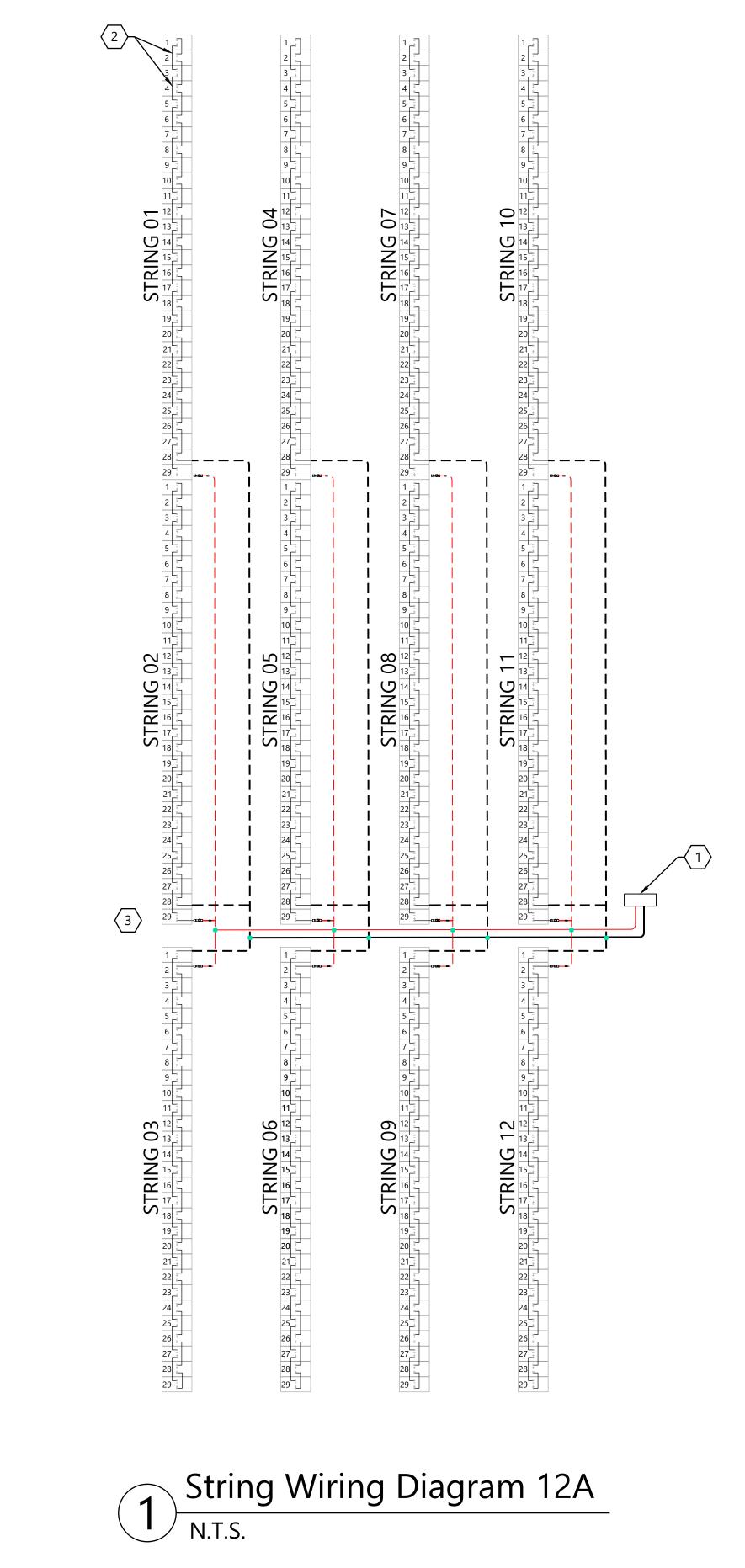
REVISIONS:					
#	DATE	COMMENT	BY	CHK APR	
A	05/22/23	ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME	
В	06/16/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME	
С	07/13/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME	

Kansas Sky **Energy Center**

Douglas County, Kansas

String Wiring Harness Diagram - 15A & 14A


NOT FOR CONSTRUCTION


DATE:

07/13/2023

SHEET:

_

1 1 2

LEGEND

·	_
	_
	_

FUSE
PV MODULE CONNECTOR (NEG -)
PV MODULE CONNECTOR (POS +)
500 KCMIL PV TRUNK CONDUCTOR (NEG -)
500 KCMIL PV TRUNK CONDUCTOR (POS +)
LBD
SHOALS BLA HARNESS

INLINE FUSE

NOTES

- 1. SEE SHEET E2000 THRU E2001 FOR DC SITE PLANS AND LOCATIONS OF LBD BLOCKS. LBDs SHALL ALWAYS BE
- NORTH OF CAB MESSENGER WIRE.
- 2. SEE SHEET E2300 FOR DC LEVEL II SLD.

KEY NOTES

- (1) LOAD BREAK DISCONNECT
- $\langle 2 \rangle$ STRING (STR) WIRING. TYPICAL.
- $\left< \frac{3}{3} \right>$ GAP SHOWN FOR CAB AND MESSENGER WIRE.

Phone (608) 821-6600 8401 Greenway Blvd., Suite 400

Middleton, WI 53562 westwoodps.com Westwood Professional Services, Inc.

PREPARED FOR:

FREE STATE SOLAR LLC.

PREPARED FOR PROJECT NUMBER: 09100007

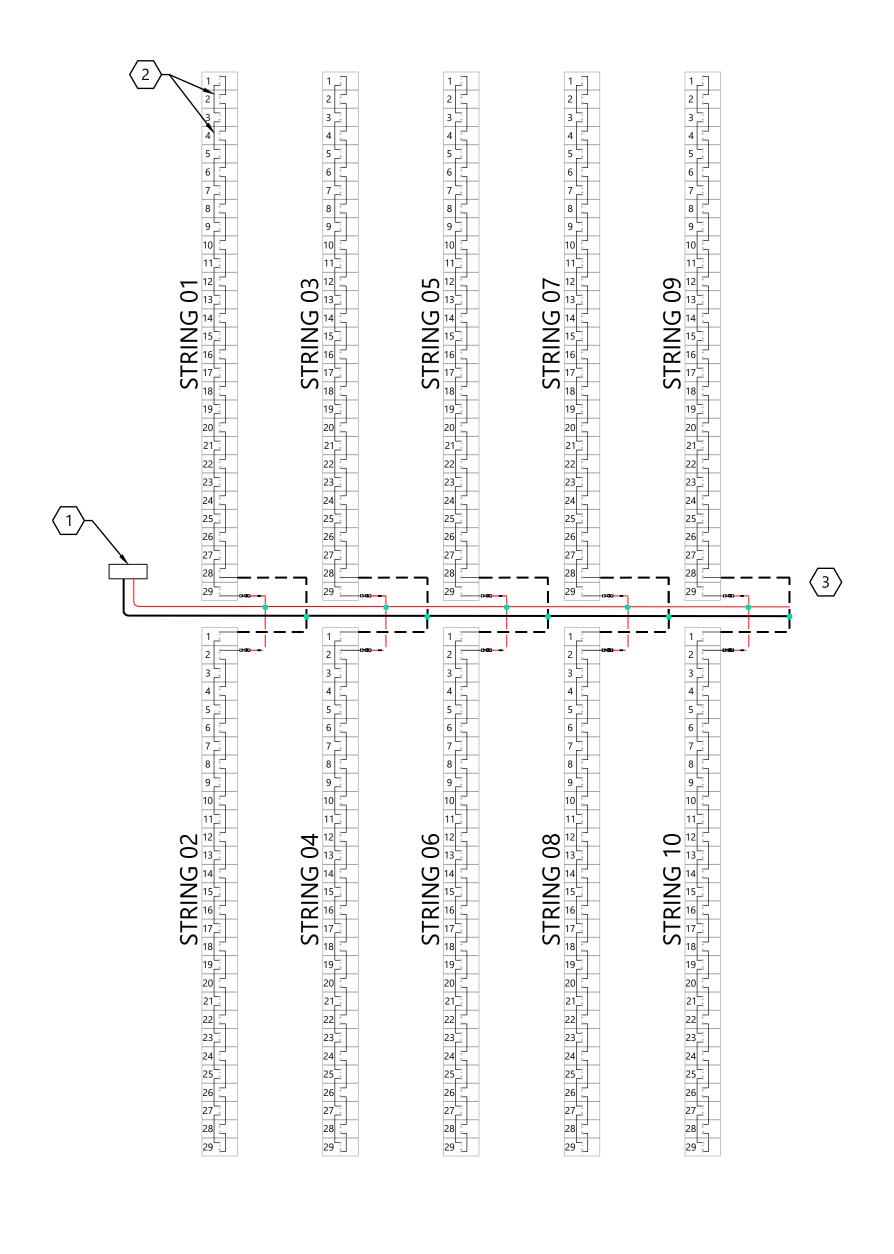
# DATE COMMENT BY CH A 05/22/23 ISSUED FOR 30% DESIGN REVIEW GH WN B 06/16/23 RE-ISSUED FOR 30% DESIGN REVIEW GH WN	APR
B 06/16/23 RE-ISSUED FOR 30% DESIGN REVIEW GH WM	EWME
	EWME
C 07/13/23 RE-ISSUED FOR 30% DESIGN REVIEW GH WM	EWME

Kansas Sky Energy Center

Douglas County, Kansas

String Wiring Harness Diagram - 13A & 12A

NOT FOR CONSTRUCTION


DATE:

07/13/2023

SHEET:

E3301

REV:

String Wiring Diagram 10A 1 N.T.S.

LEGEND

FUSE
PV MODULE CONNECTOR (NEG -)
PV MODULE CONNECTOR (POS +)
500 KCMIL PV TRUNK CONDUCTOR (NEG -)
500 KCMIL PV TRUNK CONDUCTOR (POS +)
LBD
SHOALS BLA HARNESS

INLINE FUSE

NOTES

- 1. SEE SHEET E2000 THRU E2001 FOR DC SITE PLANS AND LOCATIONS OF LBD BLOCKS. LBDs SHALL ALWAYS BE
- NORTH OF CAB MESSENGER WIRE.
- 2. SEE SHEET E2300 FOR DC LEVEL II SLD.

KEY NOTES

- $\langle 1 \rangle$ LOAD BREAK DISCONNECT
- $\langle 2 \rangle$ STRING (STR) WIRING. TYPICAL.
- $\langle 3 \rangle$ GAP SHOWN FOR CAB AND MESSENGER WIRE.

Westwood Phone (608) 821-6600 8401 Greenway Blvd., Suite 400

Middleton, WI 53562 westwoodps.com Westwood Professional Services, Inc.

PREPARED FOR:

FREE STATE **SOLAR LLC.**

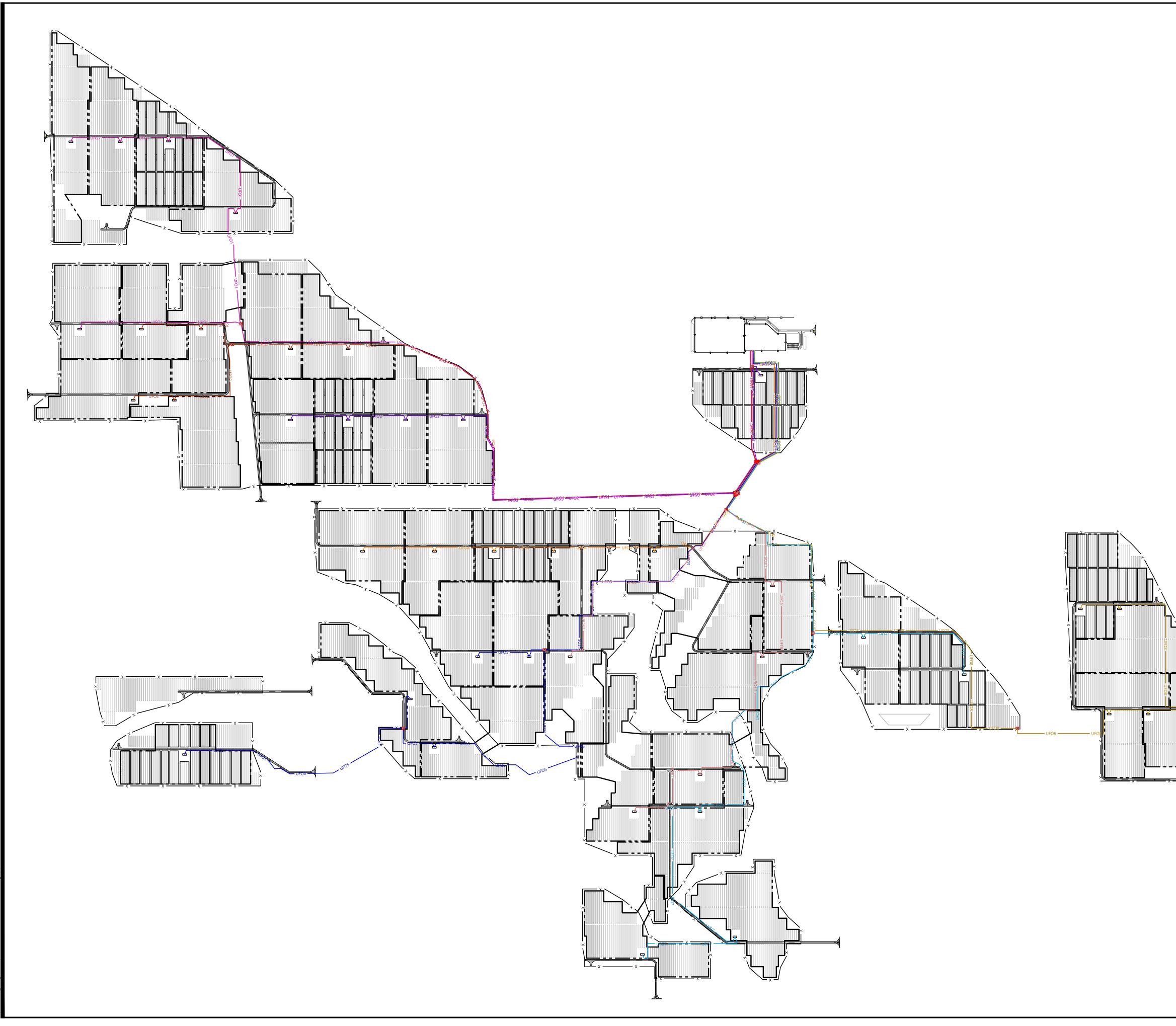
PREPARED FOR PROJECT NUMBER: 09100007

REVISIONS:					
#	DATE	COMMENT	BY	CHK APR	
A	05/22/23	ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME	
В	06/16/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME	
C	07/13/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME	

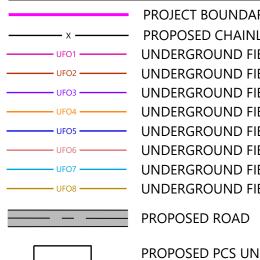
Kansas Sky **Energy Center**

Douglas County, Kansas

String Wiring Harness Diagram - 10A


NOT FOR CONSTRUCTION

DATE:


07/13/2023

SHEET:

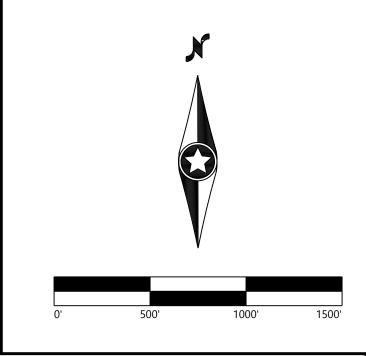
LEGEND

PROJECT BOUNDARY ------- PROPOSED CHAINLINK SECURITY FENCE UNDERGROUND FIBER OPTIC CIRCUIT 1 UNDERGROUND FIBER OPTIC CIRCUIT 2 UNDERGROUND FIBER OPTIC CIRCUIT 3 UNDERGROUND FIBER OPTIC CIRCUIT 4 UF05 UNDERGROUND FIBER OPTIC CIRCUIT 5 UNDERGROUND FIBER OPTIC CIRCUIT 6 UNDERGROUND FIBER OPTIC CIRCUIT 7 UNDERGROUND FIBER OPTIC CIRCUIT 8

PROPOSED PCS UNIT

SOLAR ARRAY

Westwood Phone (608) 821-6600 8401 Greenway Blvd., Suite 400 Middleton, WI 53562 westwoodps.com


Westwood Professional Services, Inc.

PREPARED FOR:

FREE STATE SOLAR LLC.

PREPARED FOR PROJECT NUMBER: 09100007

REVISIONS:						
#	DATE	COMMENT	BY	CHK APR		
A	05/22/23	ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME		
В	06/16/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME		
С	07/13/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME		
D	08/09/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME		

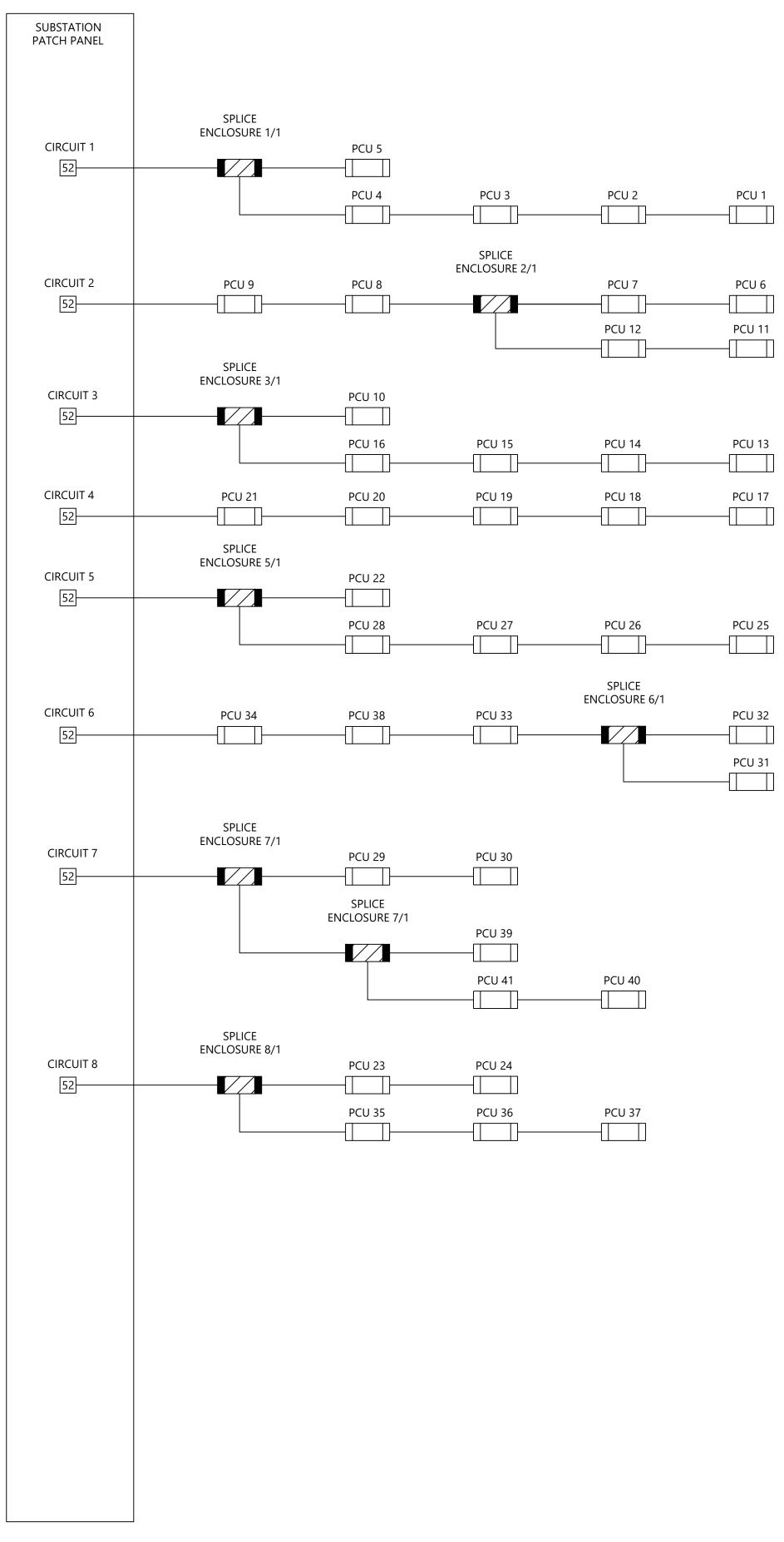
Kansas Sky **Energy Center**

Douglas County, Kansas

Overall **Communication Site** Plan

NOT FOR CONSTRUCTION

DATE:


08/09/2023

SHEET:

E6000

REV:

D

LEGEND

 \square

INVERTER LOCATION

JUNCTION BOX WITH SPLICE ENCLOSURE

FIBER OPTIC COMMUNICATION CABLE

NOTES

- 1. FIBER OPTIC SPLICES SHOULD BE KEPT TO A MINIMUM WHERE POSSIBLE IN ORDER TO MINIMIZE OPTICAL PATH SIGNAL ATTENUATION.
- 2. TWO WAY FIBER SPLICE ENCLOSURES SHOULD BE EVERY 10,000 FT WHERE NOT TERMINATED AT EQUIPMENT AND PLACED NEAR JUNCTION BOXES WHERE POSSIBLE.

Westw Phone (608) 821-6600 8401 Greenway Blvd., Suite 400

Middleton, WI 53562 westwoodps.com Westwood Professional Services, Inc.

PREPARED FOR:

FREE STATE **SOLAR LLC.**

PREPARED FOR PROJECT NUMBER: 09100007

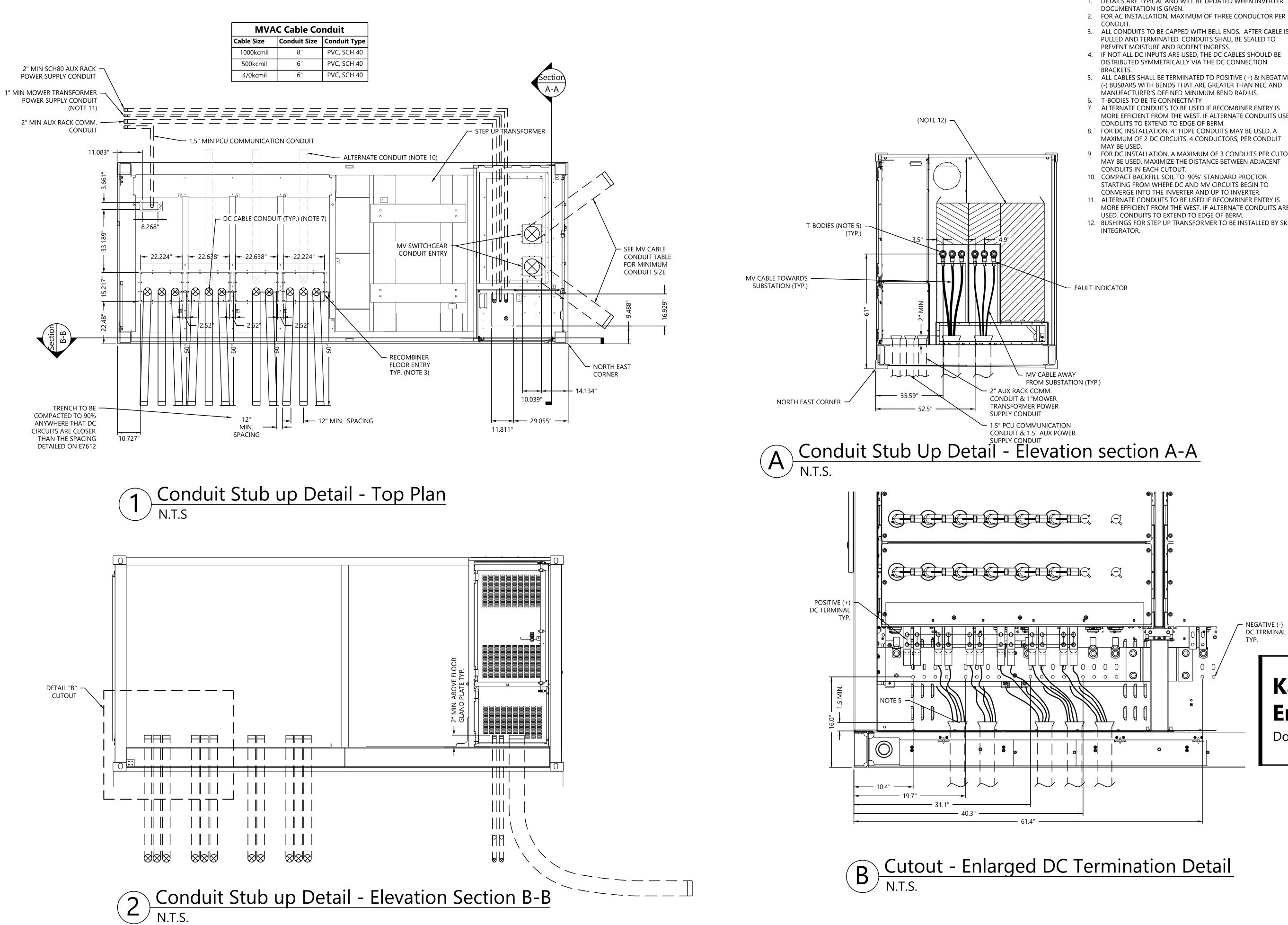
RE				
#	DATE	COMMENT	BY	CHK APR
A	05/22/23	ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
В	06/16/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
С	07/13/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME

Kansas Sky **Energy Center**

Douglas County, Kansas

Fiber Optic Single Line Diagram

NOT FOR CONSTRUCTION


DATE:

07/13/2023

SHEET:

E6200 C

NOTES

- 1. DETAILS ARE TYPICAL AND WILL BE UPDATED WHEN INVERTER
- 2. FOR AC INSTALLATION, MAXIMUM OF THREE CONDUCTOR PER
- 3. ALL CONDUITS TO BE CAPPED WITH BELL ENDS. AFTER CABLE IS PULLED AND TERMINATED, CONDUITS SHALL BE SEALED TO
- 4. IF NOT ALL DC INPUTS ARE USED, THE DC CABLES SHOULD BE DISTRIBUTED SYMMETRICALLY VIA THE DC CONNECTION
- 5. ALL CABLES SHALL BE TERMINATED TO POSITIVE (+) & NEGATIVE (-) BUSBARS WITH BENDS THAT ARE GREATER THAN NEC AND MANUFACTURER'S DEFINED MINIMUM BEND RADIUS.
- 7. ALTERNATE CONDUITS TO BE USED IF RECOMBINER ENTRY IS MORE EFFICIENT FROM THE WEST. IF ALTERNATE CONDUITS USED,
- MAXIMUM OF 2 DC CIRCUITS, 4 CONDUCTORS, PER CONDUIT
- FOR DC INSTALLATION, A MAXIMUM OF 3 CONDUITS PER CUTOU MAY BE USED. MAXIMIZE THE DISTANCE BETWEEN ADJACENT
- STARTING FROM WHERE DC AND MV CIRCUITS BEGIN TO CONVERGE INTO THE INVERTER AND UP TO INVERTER.
- 11. ALTERNATE CONDUITS TO BE USED IF RECOMBINER ENTRY IS MORE EFFICIENT FROM THE WEST. IF ALTERNATE CONDUITS ARE
- 12. BUSHINGS FOR STEP UP TRANSFORMER TO BE INSTALLED BY SKID

westwoodps.com

Westwood Professional Services, Inc.

PREPARED FOR:

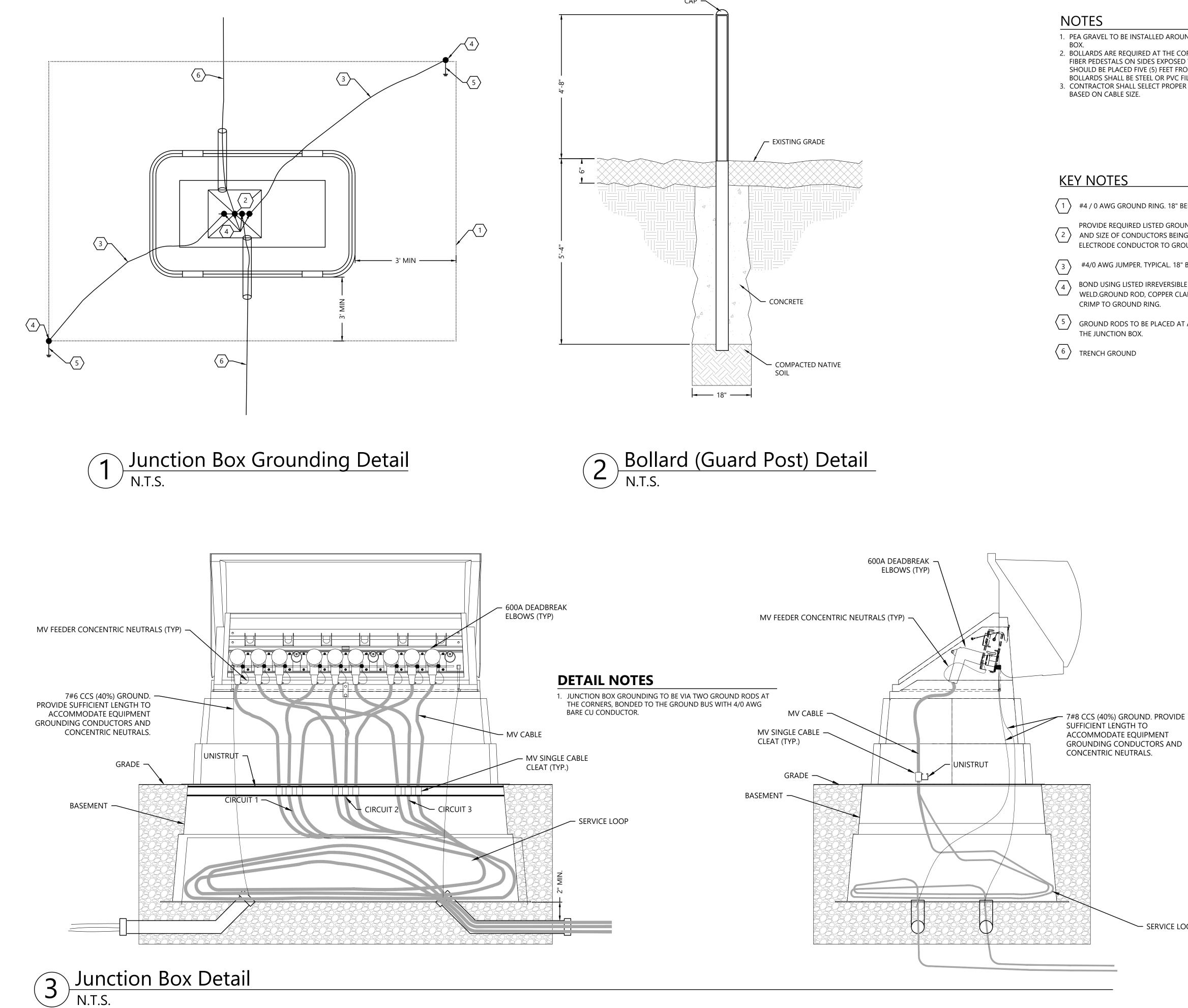
FREE STATE **SOLAR LLC.**

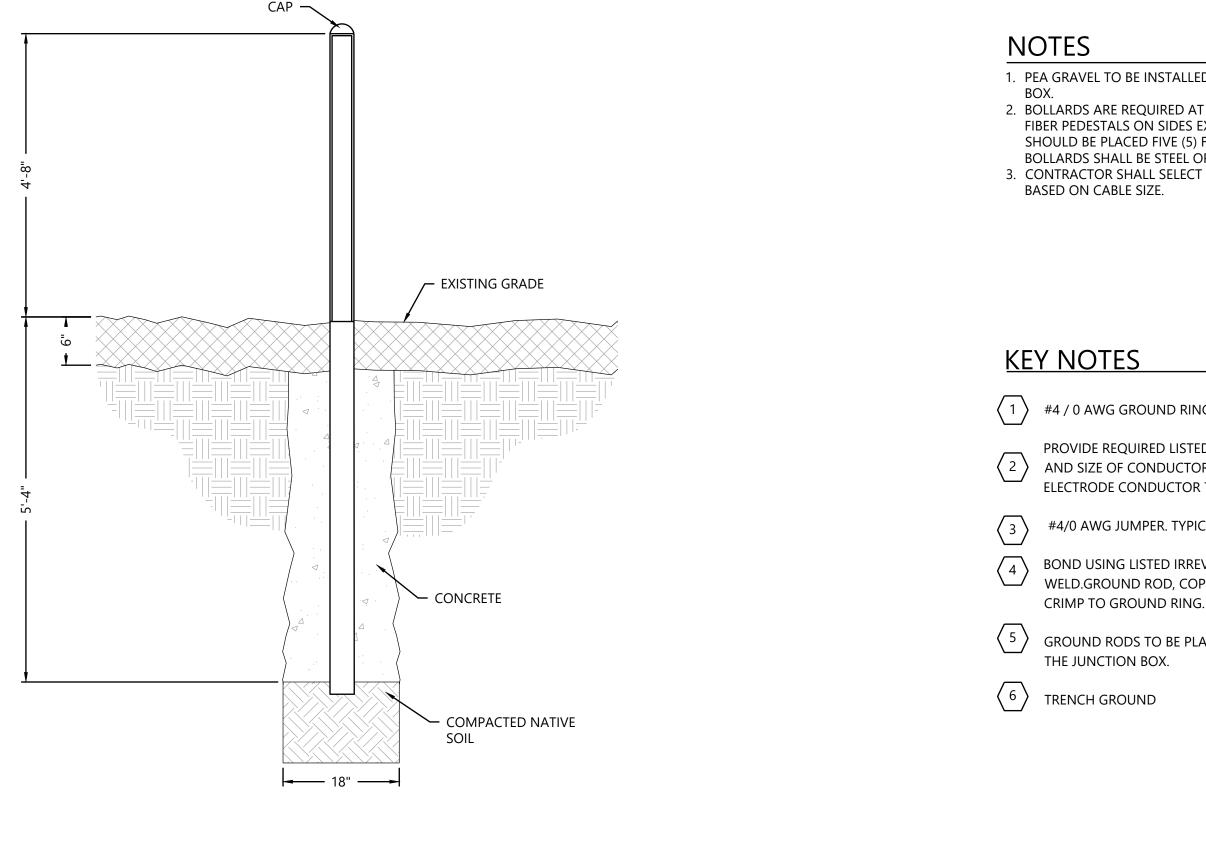
PREPARED FOR PROJECT NUMBER: 09100007

RE	VISIONS:			
#	DATE	COMMENT	BY	CHK APR
A	05/22/23	ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
В	06/16/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
С	07/13/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME

Kansas Sky **Energy Center**

Douglas County, Kansas


Inverter Details


NOT FOR CONSTRUCTION

DATE:

07/13/2023

SHEET:

1. PEA GRAVEL TO BE INSTALLED AROUND THE BASEMENT OF THE JUNCTION

2. BOLLARDS ARE REQUIRED AT THE CORNERS OF JUNCTION BOXES AND FIBER PEDESTALS ON SIDES EXPOSED TO VEHICLE TRAFFIC. BOLLARDS SHOULD BE PLACED FIVE (5) FEET FROM THE EQUIPMENT CORNERS. BOLLARDS SHALL BE STEEL OR PVC FILLED WITH CONCRETE AND REBAR. 3. CONTRACTOR SHALL SELECT PROPER CABLE CLEAT AND T-BODY SIZE

Middleton, WI 53562

westwoodps.com Westwood Professional Services, Inc.

(1) #4 / 0 AWG GROUND RING. 18" BELOW GRADE MINIMUM

PROVIDE REQUIRED LISTED GROUNDING TERMINATIONS/FITTINGS FOR QUANTITY AND SIZE OF CONDUCTORS BEING JOINED. CONNECTION OF GROUNDING ELECTRODE CONDUCTOR TO GROUNDING ELECTRODE TO BE IRREVERSIBLE

#4/0 AWG JUMPER. TYPICAL. 18" BELOW GRADE MINIMUM.

BOND USING LISTED IRREVERSIBLE CRIMP CONNECTION OR EXOTHERMIC WELD.GROUND ROD, COPPER CLAD STEEL, 5/8" X 10' OR 3/4" X 10' IRREVERSIBLY

GROUND RODS TO BE PLACED AT A MINIMUM OF 1' FROM OPPOSITE CORNERS OF

PREPARED FOR:

FREE STATE **SOLAR LLC.**

PREPARED FOR PROJECT NUMBER: 09100007

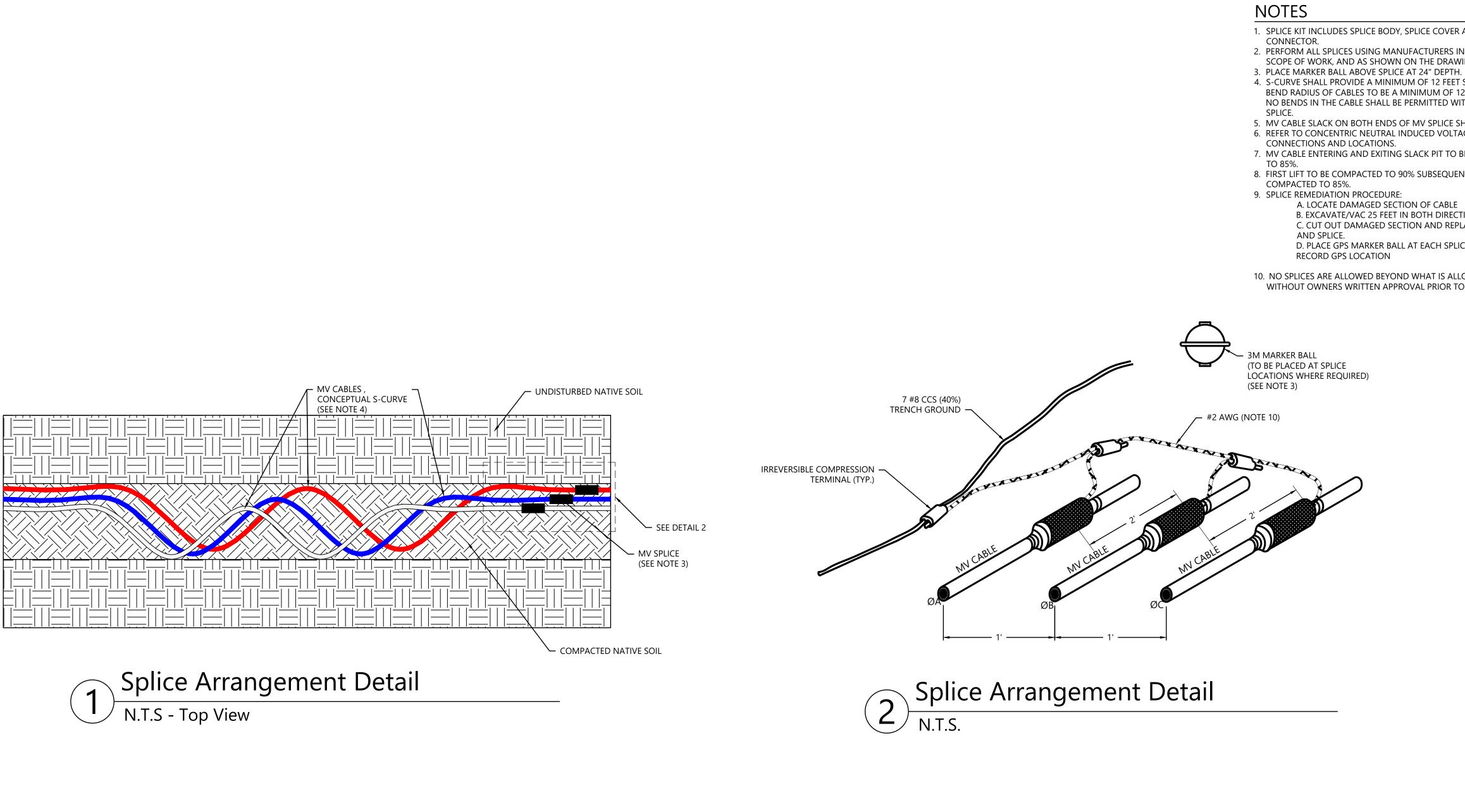
RE	VISIONS:			
#	DATE	COMMENT	BY	CHK APR
A	05/22/23	ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
В	06/16/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
C	07/13/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME

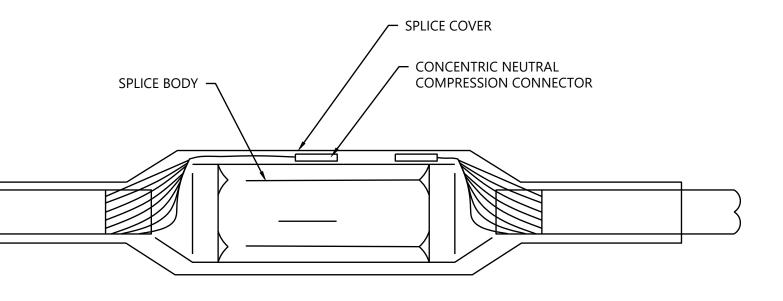
SERVICE LOOP

Kansas Sky **Energy Center**

Douglas County, Kansas

Junction Box Details


NOT FOR CONSTRUCTION


DATE:

07/13/2023

REV:

SHEET:

1. SPLICE KIT INCLUDES SPLICE BODY, SPLICE COVER AND COMPRESSION

2. PERFORM ALL SPLICES USING MANUFACTURERS INSTRUCTIONS, OWNER'S SCOPE OF WORK, AND AS SHOWN ON THE DRAWINGS.

4. S-CURVE SHALL PROVIDE A MINIMUM OF 12 FEET SLACK AT EVERY SPLICE. BEND RADIUS OF CABLES TO BE A MINIMUM OF 12 TIMES CABLE DIAMETER. NO BENDS IN THE CABLE SHALL BE PERMITTED WITHIN 2 FEET OF THE

5. MV CABLE SLACK ON BOTH ENDS OF MV SPLICE SHALL BE EQUAL LENGTH 6. REFER TO CONCENTRIC NEUTRAL INDUCED VOLTAGE STUDY FOR SPLICE

7. MV CABLE ENTERING AND EXITING SLACK PIT TO BE FLAT CONFIGURATION

8. FIRST LIFT TO BE COMPACTED TO 90% SUBSEQUENT LIFTS TO BE

A. LOCATE DAMAGED SECTION OF CABLE

B. EXCAVATE/VAC 25 FEET IN BOTH DIRECTIONS PAST THE DAMAGE. C. CUT OUT DAMAGED SECTION AND REPLACE WITH NEW CABLES

D. PLACE GPS MARKER BALL AT EACH SPLICE LOCATION AND RECORD GPS LOCATION

10. NO SPLICES ARE ALLOWED BEYOND WHAT IS ALLOWED IN THE DESIGN WITHOUT OWNERS WRITTEN APPROVAL PRIOR TO SPLICING.

Westwood

Middleton, WI 53562 westwoodps.com

Phone (608) 821-6600 8401 Greenway Blvd., Suite 400

Westwood Professional Services, Inc.

PREPARED FOR:

FREE STATE **SOLAR LLC.**

PREPARED FOR PROJECT NUMBER: 09100007

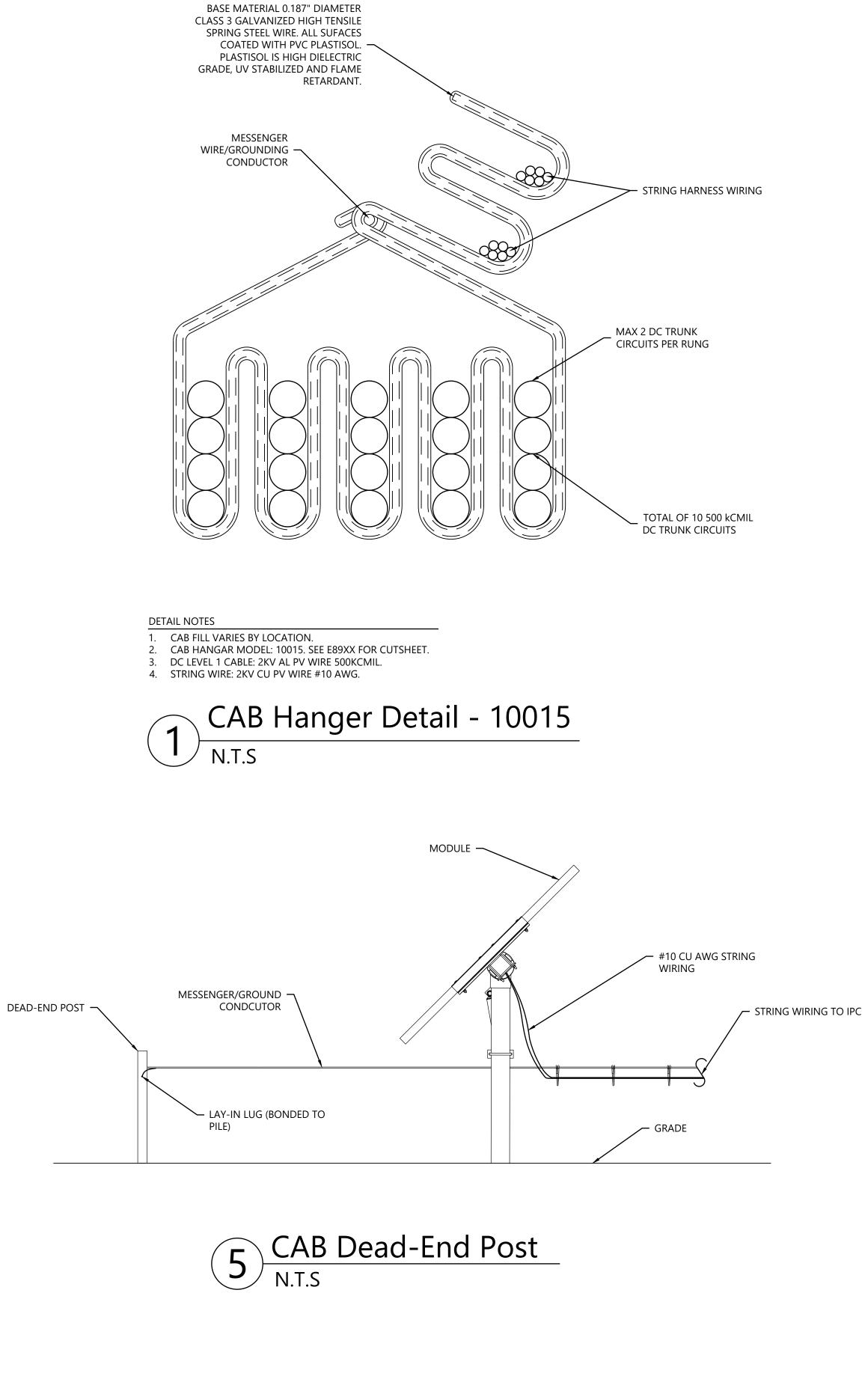
RE	VISIONS:			
#	DATE	COMMENT	BY	CHK APR
A	05/22/23	ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
В	06/16/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
С	07/13/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME

Kansas Sky **Energy Center**

Douglas County, Kansas

Splice Box Details

NOT FOR CONSTRUCTION


DATE:

07/13/2023

E7012

REV:

С

Westwood Phone (608) 821-6600 8401 Greenway Blvd., Suite 400 Middleton, WI 53562

westwoodps.com

Westwood Professional Services, Inc.

PREPARED FOR:

FREE STATE **SOLAR LLC.**

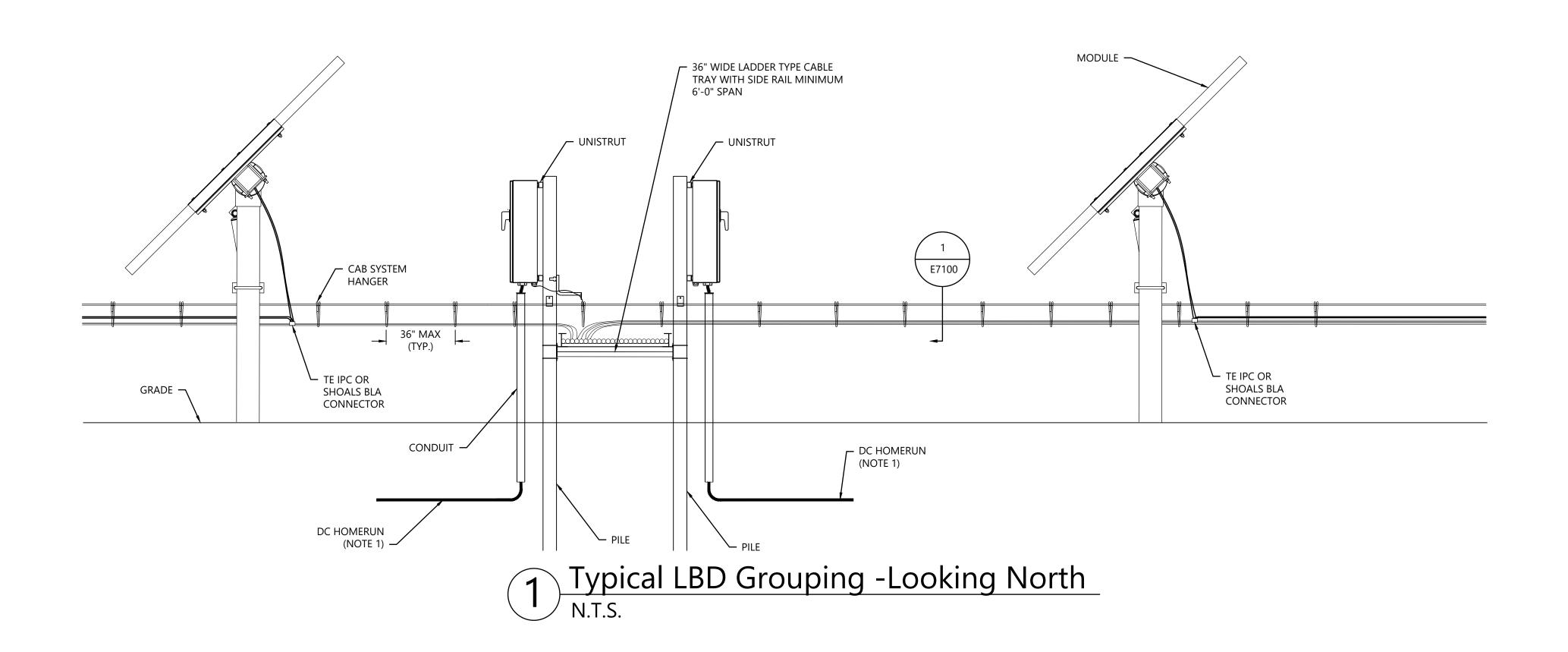
PREPARED FOR PROJECT NUMBER: 09100007

RE	VISIONS:			
#	DATE	COMMENT	BY	CHK APR
A	05/22/23	ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
В	06/16/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
С	07/13/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME

Kansas Sky **Energy Center**

Douglas County, Kansas

DC Electrical Details


NOT FOR CONSTRUCTION

DATE:

07/13/2023 E7100

REV:

С

NOTES 2. 4" (MIN.) OF CABLE SLACK.

1. DC HOMERUN CABLE MAY RUN NORTH OR SOUTH TO INVERTER DEPENDING ON THE LBD GROUP LOCATION.

3. TRENCH GROUND TO BE BONDED TO PILE.

4. MESSENGER WIRE TO BE BONDED TO PILE WITH #3 AWG BARE COPPER. 5. CENTER PILE(S) VARY BASED ON NUMBER OF LBDS. SEE CIVIL AND STRUCTURAL PLANS FOR NUMBER OF PILES FOR EACH RACK.

6. DIMENSIONS ARE APPROXIMATE, REFER TO STRUCTURAL AND CIVIL PACKAGE FOR FINAL VALUES.

7. CONDUITS ONLY REQUIRED AT PILES CLOSEST TO TRACKER MOTORS.

Phone (608) 821-6600 8401 Greenway Blvd., Suite 400

Middleton, WI 53562 westwoodps.com Westwood Professional Services, Inc.

PREPARED FOR:

FREE STATE **SOLAR LLC.**

PREPARED FOR PROJECT NUMBER: 09100007

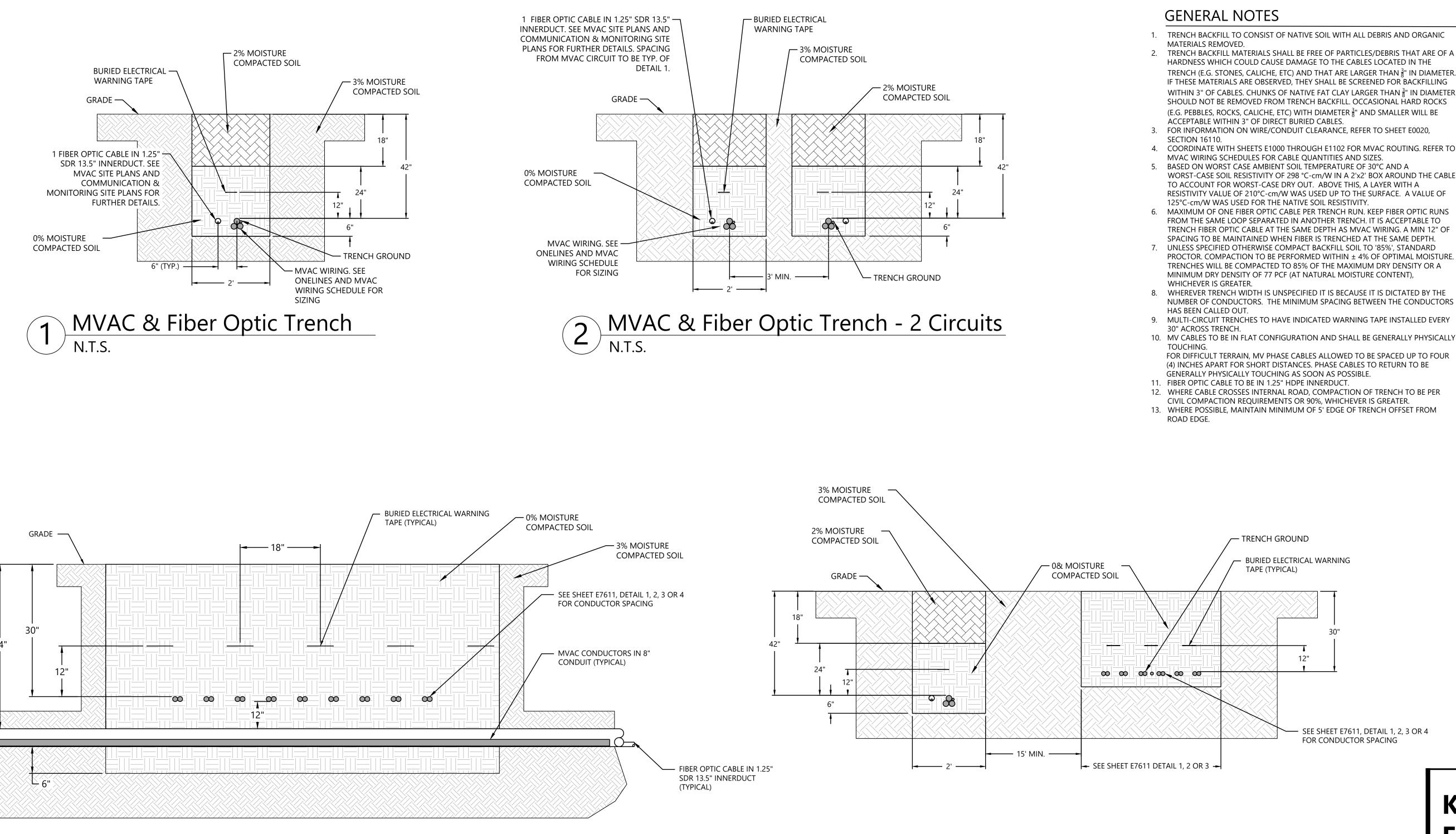
RE	VISIONS:			
#	DATE	COMMENT	BY	CHK APR
A	05/22/23	ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
В	06/16/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
С	07/13/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME

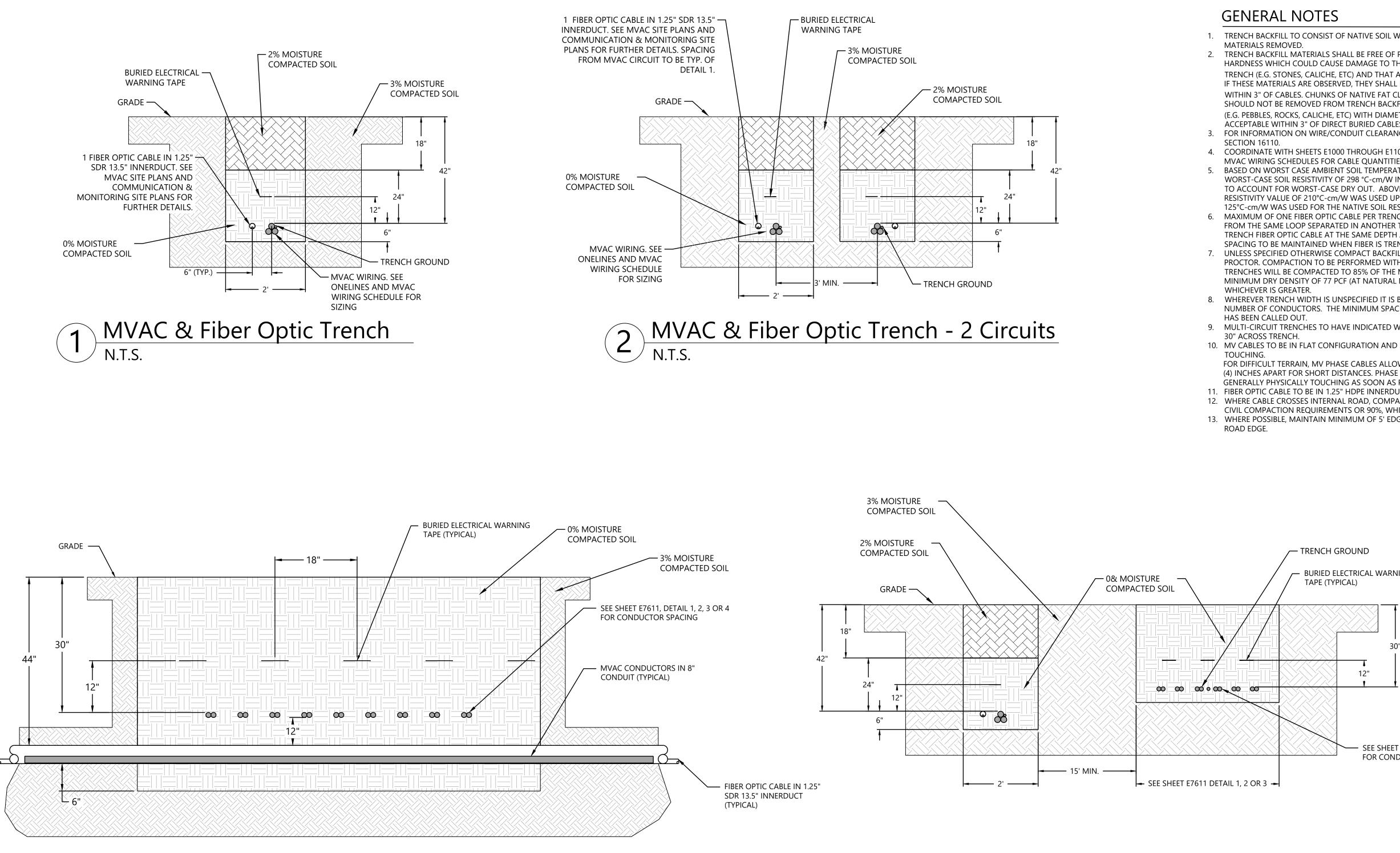
Kansas Sky **Energy Center**

Douglas County, Kansas

DC Electrical Details

NOT FOR CONSTRUCTION


DATE:


SHEET:

07/13/2023

E7101

REV: С

1. TRENCH BACKFILL TO CONSIST OF NATIVE SOIL WITH ALL DEBRIS AND ORGANIC

TRENCH BACKFILL MATERIALS SHALL BE FREE OF PARTICLES/DEBRIS THAT ARE OF A HARDNESS WHICH COULD CAUSE DAMAGE TO THE CABLES LOCATED IN THE TRENCH (E.G. STONES, CALICHE, ETC) AND THAT ARE LARGER THAN 👬 IN DIAMETER. IF THESE MATERIALS ARE OBSERVED, THEY SHALL BE SCREENED FOR BACKFILLING WITHIN 3" OF CABLES. CHUNKS OF NATIVE FAT CLAY LARGER THAN 🖁 IN DIAMETER SHOULD NOT BE REMOVED FROM TRENCH BACKFILL. OCCASIONAL HARD ROCKS (E.G. PEBBLES, ROCKS, CALICHE, ETC) WITH DIAMETER 🖁 " AND SMALLER WILL BE

COORDINATE WITH SHEETS E1000 THROUGH E1102 FOR MVAC ROUTING. REFER TO

BASED ON WORST CASE AMBIENT SOIL TEMPERATURE OF 30°C AND A

WORST-CASE SOIL RESISTIVITY OF 298 °C-cm/W IN A 2'x2' BOX AROUND THE CABLE TO ACCOUNT FOR WORST-CASE DRY OUT. ABOVE THIS, A LAYER WITH A RESISTIVITY VALUE OF 210°C-cm/W WAS USED UP TO THE SURFACE. A VALUE OF

MAXIMUM OF ONE FIBER OPTIC CABLE PER TRENCH RUN. KEEP FIBER OPTIC RUNS FROM THE SAME LOOP SEPARATED IN ANOTHER TRENCH. IT IS ACCEPTABLE TO TRENCH FIBER OPTIC CABLE AT THE SAME DEPTH AS MVAC WIRING. A MIN 12" OF SPACING TO BE MAINTAINED WHEN FIBER IS TRENCHED AT THE SAME DEPTH.

PROCTOR. COMPACTION TO BE PERFORMED WITHIN ± 4% OF OPTIMAL MOISTURE. TRENCHES WILL BE COMPACTED TO 85% OF THE MAXIMUM DRY DENSITY OR A MINIMUM DRY DENSITY OF 77 PCF (AT NATURAL MOISTURE CONTENT),

WHEREVER TRENCH WIDTH IS UNSPECIFIED IT IS BECAUSE IT IS DICTATED BY THE NUMBER OF CONDUCTORS. THE MINIMUM SPACING BETWEEN THE CONDUCTORS

FOR DIFFICULT TERRAIN, MV PHASE CABLES ALLOWED TO BE SPACED UP TO FOUR (4) INCHES APART FOR SHORT DISTANCES. PHASE CABLES TO RETURN TO BE

12. WHERE CABLE CROSSES INTERNAL ROAD, COMPACTION OF TRENCH TO BE PER CIVIL COMPACTION REQUIREMENTS OR 90%, WHICHEVER IS GREATER.

Middleton, WI 53562

westwoodps.com

Westwood Professional Services, Inc.

PREPARED FOR:

FREE STATE **SOLAR LLC.**

PREPARED FOR PROJECT NUMBER: 09100007

RE	VISIONS:			
#	DATE	COMMENT	BY	CHK APR
A	05/22/23	ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
В	06/16/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
С	07/13/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME

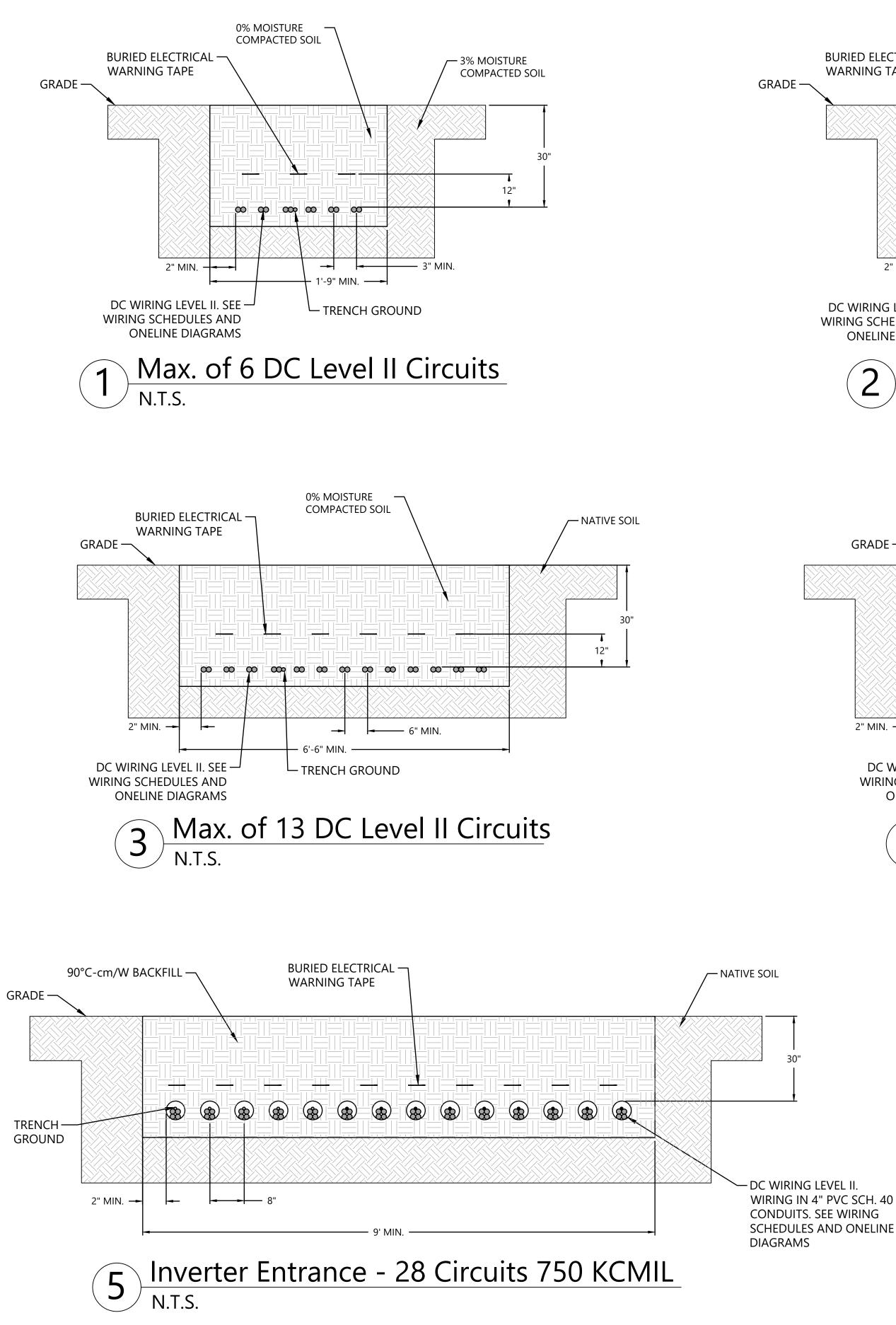
- BURIED ELECTRICAL WARNING

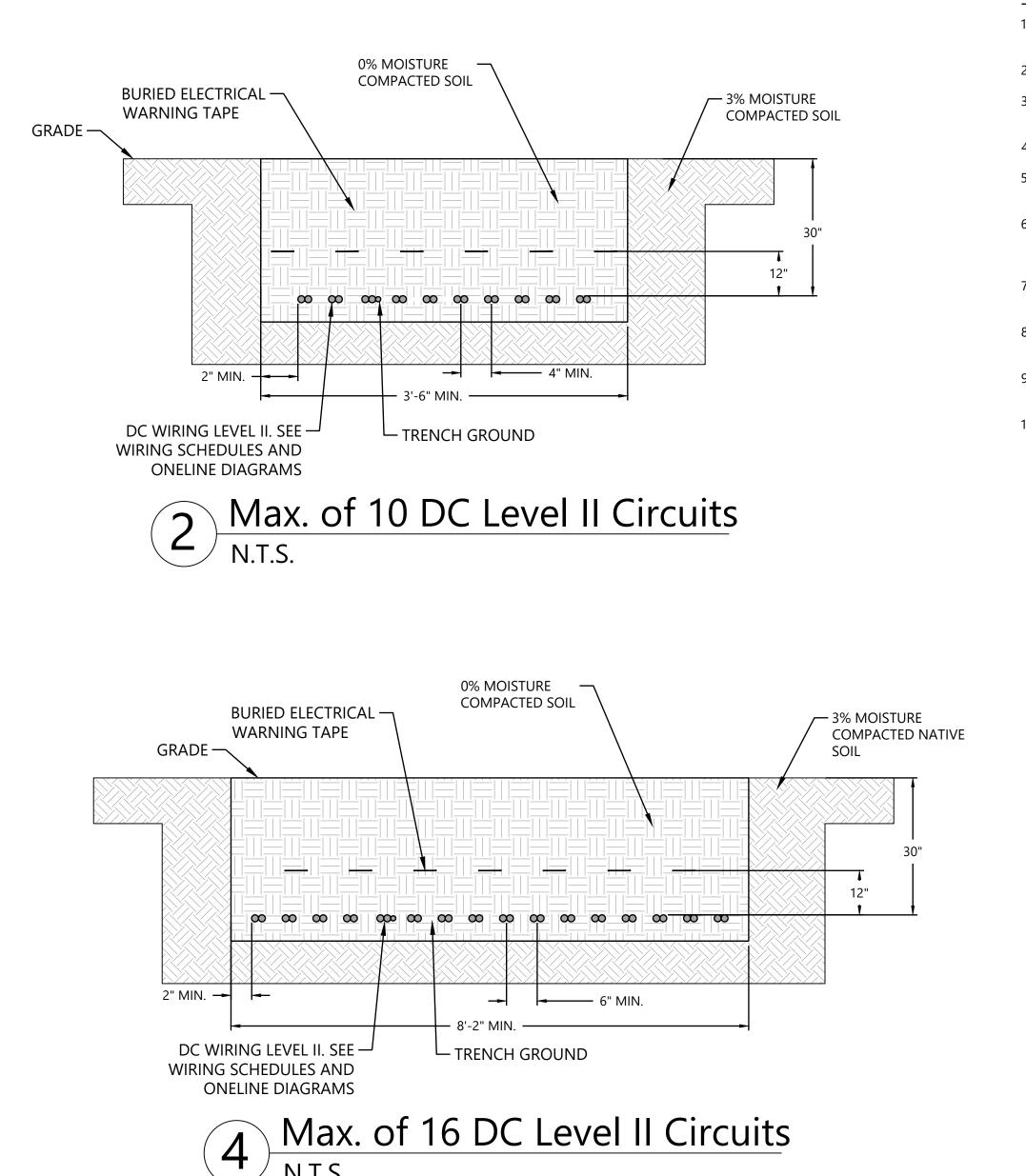
SEE SHEET E7611, DETAIL 1, 2, 3 OR 4 FOR CONDUCTOR SPACING

Kansas Sky **Energy Center**

Douglas County, Kansas

Trenching Details


NOT FOR CONSTRUCTION


DATE:

07/13/2023

E7610

REV:

N.T.S.

NOTES

1. TRENCH BACKFILL TO CONSIST OF SELECTED NATIVE SOIL WITH ALL DEBRIS AND ORGANIC MATERIALS REMOVED WITH THE EXCEPTION OF MOIST CLODS OF CLAY.

2. FOR INFORMATION ON WIRE/CONDUIT CLEARANCE, REFER TO SHEET E0020 3. COORDINATE WITH SHEETS E1000-E1102 FOR MVAC ROUTING.

REFER TO MVAC WIRING SCHEDULES FOR CABLE QUANTITIES AND SIZES. 4. COORDINATE WITH SHEET E6200 FOR FIBER OPTIC CABLE

ROUTING. 5. COORDINATE WITH SHEETS E2110-E2122 FOR DC

WIRING/CABLE ROUTING. REFER TO DC WIRING SCHEDULES FOR CABLE QUANTITIES AND SIZES.

6. BASED ON AMBIENT SOIL TEMPERATURE OF 23c AT 42" DEPTH FOR AC, 24C AT 26' DEPTH FOR DC WITH A THERMAL RESISTIVITY OF 280C-cm/W FOR NATIVE SOIL BACKFILL COMPACTED TO 85% PROCTOR.

7. IT IS ACCEPTABLE TO TRENCH FIBER OPTIC CABLE AT THE SAME DEPTH AS MVAC WIRING. A MIN 12" OF SPACING TO BE MAINTAINED AT ALL TIMES.

8. UNLESS SPECIFIED OTHERWISE COMPACT BACKFILL SOIL TO '85%', STANDARD PROCTOR COMPACTION TO BE PERFORMED WET OF OPTIMAL MOISTURE.

9. CONTRACTOR SHALL BACKFILL WITHIN 12" OF THE CABLES, SHALL BE FREE OF SHARP OBJECTS, ROCKS, AND OTHER DEBRIS LARGER THAN 3/8 INCH.

10. CONTRACTOR TO USE CABLE TIES TO SECURE TREFOIL EVERY 5'.

Middleton, WI 53562 westwoodps.com

Phone (608) 821-6600 8401 Greenway Blvd., Suite 400

Westwood Professional Services, Inc.

PREPARED FOR:

FREE STATE **SOLAR LLC.**

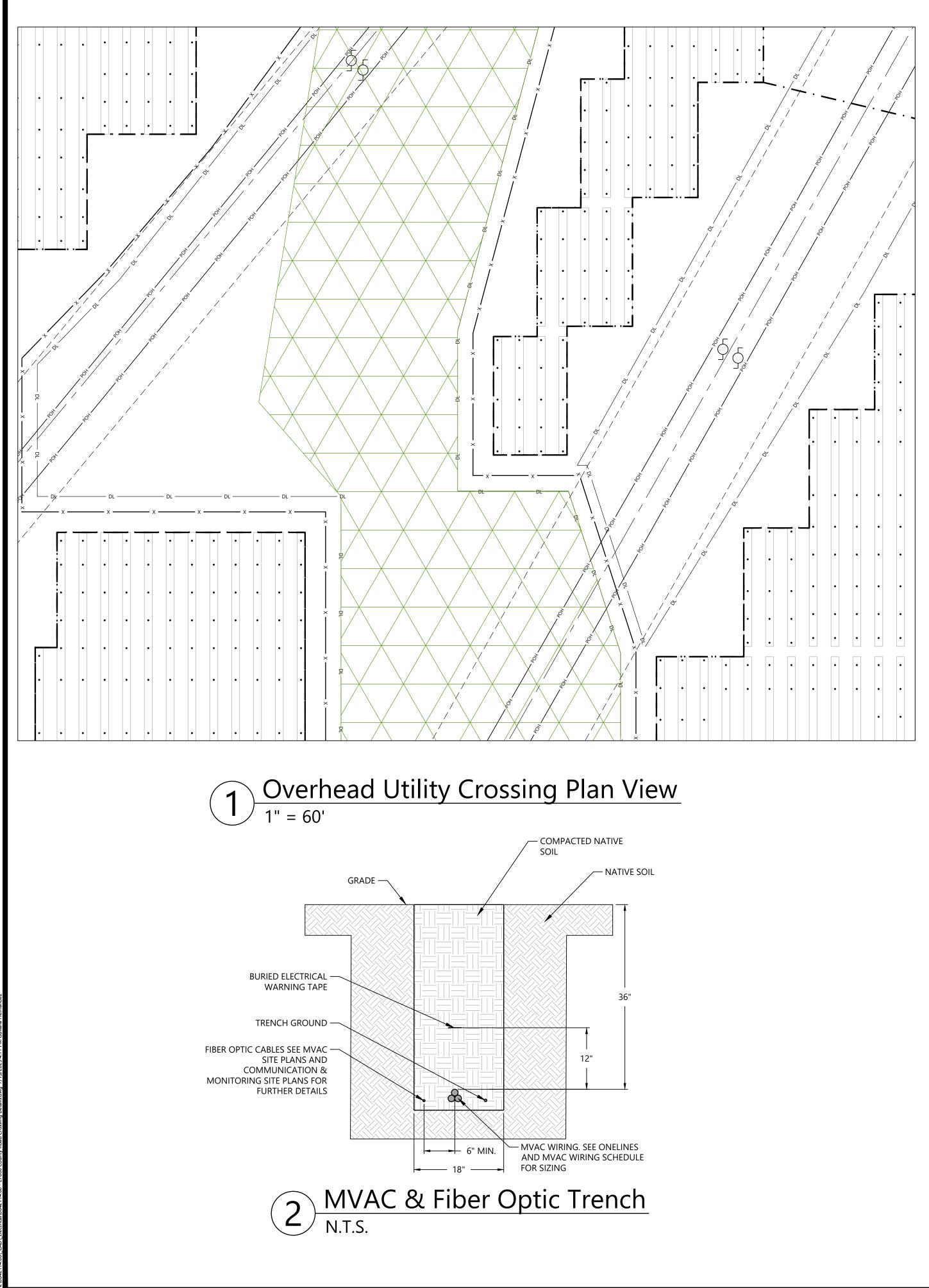
PREPARED FOR PROJECT NUMBER: 09100007

RE	VISIONS:			
#	DATE	COMMENT	BY	CHK APR
A	05/22/23	ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
В	06/16/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
С	07/13/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME

Kansas Sky **Energy Center**

Douglas County, Kansas

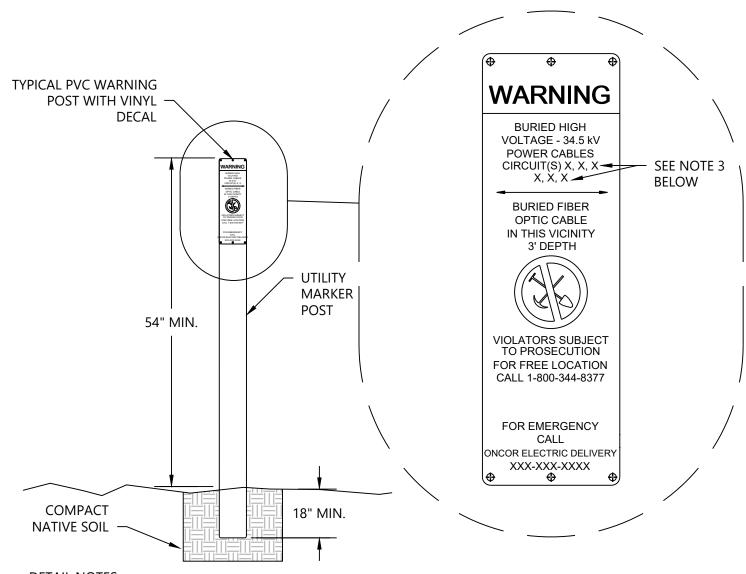
Trenching Details


NOT FOR CONSTRUCTION

DATE:

07/13/2023

SHEET:



LEGEND	
X X Misc L X Misc L X Misc X Misc X Misc X Misc X Misc X Misc X Misc	PROJECT BOUNDARY RIGHT-OF-WAY LINES EASEMENT LINES EX. FENCE EX. MISCELLANOUS UTILITY EX. WATER EDGE LINE EX. STREAM CHANNEL EX. DELINEATED WETLAND FLOOD HAZARD AREA PROPOSED LAY-DOWN YARD PROPOSED LAY-DOWN YARD
X UMV1 UMV2 UMV4 UMV5 UMV6 UMV7 UMV8	EX. PAVED ROAD EX. GRAVEL ROAD PROPOSED INVERTER PROPOSED ACCESS ROAD PROPOSED SECURITY FENCE UNDERGROUND MVAC CIRCUIT 1 UNDERGROUND MVAC CIRCUIT 2 UNDERGROUND MVAC CIRCUIT 3 UNDERGROUND MVAC CIRCUIT 5 UNDERGROUND MVAC CIRCUIT 5 UNDERGROUND MVAC CIRCUIT 6 UNDERGROUND MVAC CIRCUIT 7 UNDERGROUND MVAC CIRCUIT 7 UNDERGROUND MVAC CIRCUIT 8 UTILITY MARKER

NOTES

- PROVIDE BURIED RFID BALL MARKERS FOR EACH END OF ALL TRENCHING. 1 2. ALL NORTHING AND EASTING COORDINATES PROVIDED IN PLAN VIEW ARE BASED ON NAD83 TEXAS STATE PLANES, SOUTH CENTRAL ZONE, US FOOT.
- 3. THE UTILITIES SHOWN HAVE BEEN LOCATED FROM FIELD SURVEY INFORMATION AND EXISTING DRAWINGS. THE SURVEYOR MAKES NO GUARANTEES THAT THE UTILITIES SHOWN COMPRISE ALL SUCH UTILITIES IN THE AREA, EITHER IN SERVICE OR ABANDONED. THE SURVEYOR FURTHER DOES NOT WARRANT THAT THE UTILITIES SHOWN ARE IN THE EXACT LOCATION INDICATED ALTHOUGH HE DOES CERTIFY THAT THEY ARE LOCATED AS ACCURATELY AS POSSIBLE FROM INFORMATION AVAILABLE.
- 4. CONTRACTOR SHALL COORDINATE WITH ENTITIES FOR APPROVAL OF CROSSINGS OF EXISTING FIBER OPTIC LINES, OIL/GAS PIPING, OVERHEAD TRANSMISSION/DISTRIBUTION LINES, HIGHWAYS/COUNTY ROADS, ETC. ALSO, VERIFY THE EXACT CROSSING REQUIREMENTS FOR BURIAL DEPTH, DISTANCE FROM STRUCTURES, ETC. PRIOR TO PERFORMING WORK, NOTIFY ENGINEER OF ANY SPACING OR BURIAL DEPTH CHANGES REQUIRED TO CONFIRM MV CABLES HAVE SUFFICIENT CAPACITY TO ACCOMMODATE THOSE REVISIONS. CONTRACTOR TO FIELD VERIFY AND COORDINATE LOCATION OF MVAC TRENCH ROUTING TO STAY CLEAR OF THE FENCE POSTS.
- THE PROPOSED UTILITY SHALL CROSS THE R.O.W. AT A 90 DEGREE ANGLE. ANY DEVIATION FROM THE 90 DEGREE RULE MUST BE APPROVED 6 BY THE UTILITY OWNERS.
- 7. WARNING SIGNS WITH COMPANY'S CONTACT INFORMATION SHALL BE INSTALLED JUST OUTSIDE OF THE R.O.W., ON BOTH SIDES DEPICTING THE CENTER LINE OF THE CONSTRUCTED UTILITIES WITHIN THE R.O.W.

DETAIL NOTES

- 1. ABOVEGROUND MARKER SHALL BE PLACED WHERE PROPOSED UNDERGROUND INFRASTRUCTURE ENTERS AND AND EXITS RIGHT-OF WAY AND EXISTING UTILITY EASEMENTS.
- 2. EMS BALL MARKER SHALL BE PLACED 24"-36" BELOW GRADE WHERE UTILITY MARKER IS INSTALLED.
- 3. SEE SHEET E7660 FOR LIST OF CIRCUITS.
- 4. UTILITY MARKER ARROWS TO POINT ONLY IN DIRECTION OF CIRCUITS.

Middleton, WI 53562

westwoodps.com

Westwood Professional Services, Inc.

PREPARED FOR:

FREE STATE **SOLAR LLC.**

PREPARED FOR PROJECT NUMBER: 09100007

RE	VISIONS:			
#	DATE	COMMENT	BY	CHK APR
A	05/22/23	ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
В	06/16/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
С	07/13/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME

Kansas Sky **Energy Center**

Douglas County, Kansas

Overhead Utility Crossing Details

NOT FOR CONSTRUCTION

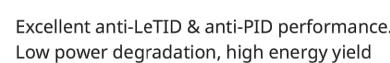
DATE:

07/13/2023 E7661

REV:

Se CanadianSolar

TOPBiHiKu7 N-type Bifacial TOPCon Technology 655 W ~ 670 W CS7N-655|660|665|670TB-AG


MORE POWER

NEW

III

Up to 85% Power Bifaciality, more power from the back side

Lower temperature coefficient (Pmax): -0.29%/°C, increases energy yield in hot climate

Lower LCOE & system cost

MORE RELIABLE

Minimizes micro-crack impacts

Heavy snow load up to 5400 Pa, wind load up to 2400 Pa*

* For detailed information, please refer to the Installation Manual.

FRONT 12 Years

Enhanced Product Warranty on Materials and Workmanship*

Linear Power Performance Warranty*

1st year power degradation no more than 1% Subsequent annual power degradation no more than 0.4%

*According to the applicable Canadian Solar Limited Warranty Statement.

MANAGEMENT SYSTEM CERTIFICATES*

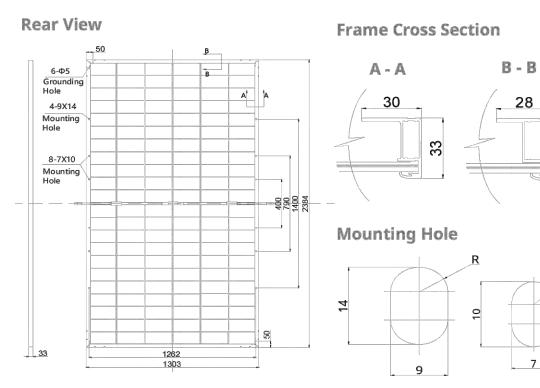
ISO 9001: 2015 / Quality management system ISO 14001: 2015 / Standards for environmental management system ISO 45001: 2018 / International standards for occupational health & safety IEC 62941: 2019 / Photovoltaic module manufacturing quality system

PRODUCT CERTIFICATES*

30

Years

IEC 61215 / IEC 61730 / CE / INMETRO / MCS / UKCA / CGC FSEC (US Florida) / UL 61730 / IEC 61701 / IEC 62716 IEC 60068-2-68 / Take-e-way


* The specific certificates applicable to different module types and markets will vary, and therefore not all of the certifications listed herein will simultaneously apply to the products you order or use. Please contact your local Canadian Solar sales representative to confirm the specific certificates available for your Product and applicable in the regions in which the products will be used.

CSI Solar Co., Ltd. is committed to providing high quality solar photovoltaic modules, solar energy and battery storage solutions to customers. The company was recognized as the No. 1 module supplier for quality and performance/price ratio in the IHS Module Customer Insight Survey. Over the past 22 years, it has successfully delivered over 88 GW of premium-quality solar modules across the world.

CSI Solar Co., Ltd. 1350 Treat Blvd. Suite 500, Walnut Creek, CA 94597 | www.csisolar.com/na | service.ca@csisolar.com

ENGINEERING DRAWING (mm)

FLECTRICAL DATA | STC*

ELECTRICA	L DAT	'A STC*					
		Nominal Max. Power (Pmax)	Opt. Operating Voltage (Vmp)	Opt. Operating Current (Imp)		Short Circuit Current (Isc)	Module Efficiency
CS7N-6557	B-AG	655 W	38.2 V	17.15 A	46.1 V	18.04 A	21.1%
	5%	688 W	38.2 V	18.01 A	46.1 V	18.94 A	22.1%
Bifacial Gain**	10%	721 W	38.2 V	19.81 A	46.1 V	19.84 A	23.2%
Gam	20%	786 W	38.2 V	20.58 A	46.1 V	21.65 A	25.3%
CS7N-6601	B-AG	660 W	38.4 V	17.19 A	46.3 V	18.09 A	21.2%
	5%	693 W	38.4 V	18.05 A	46.3 V	18.99 A	22.3%
Bifacial Gain**	10%	726 W	38.4 V	19.85 A	46.3 V	19.90 A	23.4%
Gam	20%	792 W	38.4 V	20.63 A	46.3 V	21.71 A	25.5%
CS7N-6651	B-AG	665 W	38.6 V	17.23 A	46.5 V	18.14 A	21.4%
	5%	698 W	38.6 V	18.09 A	46.5 V	19.05 A	22.5%
Bifacial Gain**	10%	732 W	38.6 V	18.97 A	46.5 V	19.95 A	23.6%
Gonn	20%	798 W	38.6 V	20.68 A	46.5 V	21.77 A	25.7%
CS7N-6701	B-AG	670 W	38.8 V	17.27 A	46.7 V	18.19 A	21.6%
	5%	704 W	38.8 V	18.15 A	46.7 V	19.10 A	22.7%
Bifacial Gain**	10%	737 W	38.8 V	19.00 A	46.7 V	20.01 A	23.7%
JAIII	20%	804 W	38.8 V	20.72 A	46.7 V	21.83 A	25.9%
		C 11.1		64000.00			1 11

* Under Standard Test Conditions (STC) of irradiance of 1000 W/m², spectrum AM 1.5 and cell temperature of 25°C.

** Bifacial Gain: The additional gain from the back side compared to the power of the front side at the standard test condition. It depends on mounting (structure, height, tilt angle etc.) and albedo of the ground.

ELECTRICAL DATA

Operating Temperature	-40°C ~ +85°C
Max. System Voltage	1500 V (IEC/UL) or 1000 V (IEC/UL)
Module Fire Performance	TYPE 29 (UL 61730) or CLASS C (IEC61730)
Max. Series Fuse Rating	35 A
Application Classification	Class A
Power Tolerance	0 ~ + 10 W
rower rolerance	

Power Bifaciality* 80 % * Power Bifaciality = Pmax_{rear} / Pmax_{front}, both Pmax_{rear} and Pmax_{front} are tested under STC, Bifaciality Tolerance: ± 5 %

* The specifications and key features contained in this datasheet may deviate slightly from our actual products due to the on-going innovation and product enhancement. CSI Solar Co., Ltd. reserves the right to make necessary adjustment to the information described herein at any time without further notice.

Please be kindly advised that PV modules should be handled and installed by qualified people who have professional skills and please carefully read the safety and installation instructions before using our PV modules.

CSI Solar Co., Ltd.

Mar. 2023 | All rights reserved | PV Module Product Datasheet v1.5C1_F46_P1_NA

CS7N-665TB-AG / I-V CURVES

24 -	
22	
20 -	
18 -	
16 -	
14	
12 -	
10	
8 -	
6	2012/00-002/001412/000412/00141002/0042/0042/004
4 -	
2 -	
0	
	5 10 15 20 25 30 35
	1000 W/m ²
	800 W/m ²
	600 W/m ²
	400 W/m ²
	200 W/m ²

ELECTRICAL DATA | NMOT*

	Nominal Max. Power (Pmax)	Opt. Operating Voltage (Vmp)	Opt. Ope- rating Current (Imp)	Open Circuit Voltage (Voc)	Short Circuit Current (Isc)	
CS7N-655TB-AG	495 W	36.1 V	13.72 A	43.6 V	14.55 A	
CS7N-660TB-AG	499 W	36.3 V	13.75 A	43.8 V	14.59 A	
CS7N-665TB-AG	503 W	36.5 V	13.78 A	44.0 V	14.63 A	
CS7N-670TB-AG	507 W	36.7 V	13.81 A	44.2 V	14.67 A	
* Under Nominal Module Operating Temperature (NMOT), irradiance of 800 W/m ^{2,} spectrum AM 1.5, ambient temperature 20°C, wind speed 1 m/s.						

MECHANICAL DATA

Specification	Data
Cell Type	TOPCon cells
Cell Arrangement	132 [2 x (11 x 6)]
Dimensions	2384 × 1303 × 33 mm (93.9 × 51.3 × 1.30 in)
Weight	37.8 kg (83.3 lbs)
Front Glass	2.0 mm heat strengthened glass with anti- reflective coating
Back Glass	2.0 mm heat strengthened glass
Frame	Anodized aluminium alloy
J-Box	IP68, 3 bypass diodes
Cable	4.0 mm² (IEC), 12 AWG (UL)
Cable Length (Including Connector)	410 mm (16.1 in) (+) / 250 mm (9.8 in) (-) or 2000 mm (78.7 in) (+) / 1400 mm (55.1 in) (-)
Connector	T6 or MC4 series
Per Pallet	33 pieces
Per Container (40' HQ)	594 pieces or 495 pieces (only for US & Canada)

TEMPERATURE CHARACTERISTICS

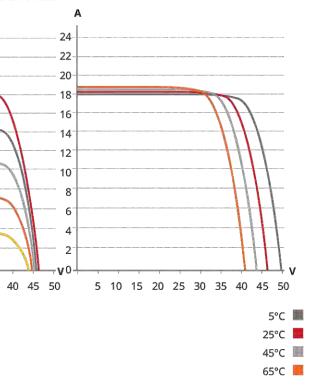
Specification

Temperature Coefficien Temperature Coefficier Temperature Coefficier Nominal Module Opera

PARTNER SECTION

Westw Phone (608) 821-6600 Middleton, WI 53562

westwoodps.com


Westwood Professional Services, Inc.

PREPARED FOR:

FREE STATE **SOLAR LLC.**

PREPARED FOR PROJECT NUMBER: 09100007

RE	VISIONS:			
#	DATE	COMMENT	BY	CHK APR
A	05/22/23	ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
В	06/16/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
С	07/13/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME

	Data
nt (Pmax)	-0.29 % / °C
nt (Voc)	-0.25 % / °C
nt (Isc)	0.05 % / °C
ating Temperature	41 ± 3°C

Kansas Sky **Energy Center**

Douglas County, Kansas

Module Specifications

NOT FOR CONSTRUCTION

DATE:

07/13/2023

SHEET:

REV: E8900

SUNNY CENTRAL 4400 UP-US / 4600 UP-US

Technical data

MPP voltage range V_{DC} (at 25 °C / at 50 ° Min. input voltage V_{DC. min} / Start voltage V Max. input voltage V_{DC, max} Max. input current I_{DC, max} Max. short-circuit current I_{DC, sc} Number of DC inputs Max. number of DC cables per DC input (Integrated zone monitoring Available PV fuse sizes (per input) Available battery fuse size (per input) Output (AC) Nominal AC power at $\cos \varphi = 1$ (at 35° C , Nominal AC power at $\cos \varphi = 0.8$ (at 35°C Nominal AC current I_{AC, nom} (at 35°C / at 50 Max. total harmonic distortion Nominal AC voltage / nominal AC voltage AC power frequency / range Min. short-circuit ratio at the AC terminals?) Power factor at rated power / displacemen Efficiency Max. efficiency²⁾ / European efficiency²⁾ / **Protective Devices** Input-side disconnection point Output-side disconnection point DC overvoltage protection AC overvoltage protection (optional) Lightning protection (according to IEC 623) Ground-fault monitoring / remote ground-fault Insulation monitoring Degree of protection General Data Dimensions (W / H / D) Weight Self-consumption (max.4) / partial load⁵⁾ / Self-consumption (standby) Internal auxiliary power supply Operating temperature range⁸⁾ Noise emission⁷ Temperature range (standby) Temperature range (storage) Max. permissible value for relative humidity Maximum operating altitude above MSL⁸⁾ Fresh air consumption Features DC connection AC connection Communication Communication with SMA string monitor (t Enclosure / roof color Supply transformer for external loads Standards and directives complied with EMC standards Quality standards and directives complied • Standard features • Optional

- 1) At nominal AC voltage, nominal AC power 2) Efficiency measured without internal power
- 3) Efficiency measured with internal power su
- 4) Self-consumption at rated operation
 5) Self-consumption at < 75% Pn at 25°C
- 6) Self-consumption averaged out from 5% to 7)7) Sound pressure level at a distance of 10 m

	SC 4400 UP-US	SC 4600 UP-US
) °C)	962 to 1325 V / 1000 V	1003 to 1325 V / 1025 \
1	962 16 1325 V / 1000 V 934 V / 1112 V	976 V / 1153 V
V DC, Start		
	1500 V	1500 V
	4750 A	4750 A
	6400 A	6400 A
	24 double pole fused	(32 single pole fused)
(for each polarity)	2 x 800 kcmi	, 2 x 400 mm ²
		0
	200 4 250 4 315 4 35	0 A, 400 A, 450 A, 500 A
		0 A
	/3	JO A
C / at 50°C)	4400 kVA ¹¹⁾ / 3960 kVA	4600 kVA ¹³⁾ / 4140 kVA
°C / at 50 °C)	3520 kW ¹¹ / 3168 kW	3680 kW ¹³⁾ / 3312 kW
50°C)	3850 A / 3465 A	3850 A / 3465 A
	< 3% at nominal power	< 3% at nominal power
je range ^{1) 8)}	660 V / 528 V to 759 V	690 V / 552 V to 759 V
,		Hz to 53 Hz
		Hz to 63 Hz
9)		· 2
ent power factor adjustable ^{8) 10)}	I / U.8 overexcited	to 0.8 underexcited
/ CEC efficiency ³⁾	98.7% / 98.6% / 98.5%	98.7% / 98.6% / 98.5%
	DC load b	break switch
		it breaker
		ester, type l
		· /1
STATE OF ALL STATE		ester, class I
305-1)	Lightning Pro	tection Level III
fault monitoring	0	/0
		0
		NA 3R
	2780 / 2318 / 1588 mm	(109.4 / 91.3 / 62.5 inch)
(4))		/ < 8158 lb
′ average ⁶⁾)		00 W / < 2000 W
	< 33	70 W
	○ Integrated 8.4	4 kVA transformer
		/ −13°F to 140°F
		dB(A)*
		/ -40°F to 140°F
	-40°C to 70°C	/ −40°F to 158°F
ity (condensing / non-condensing)	95% to 100% (2 mor	nth/year) / 0% to 95%
1000 m / 2000 m		ture-dependent derating)
) m ³ /h
	0500	/ / 11
	Terminal lug on eac	h input (without fuse)
		usbars, one per line conductor)
		Aaster, Modbus Slave
transmission modium)		
(transmission medium)		rnet (FO MM, Cat-5)
		/ RAL 7004
	o (2.	5 kVA)
		1, CDR 6I), UL 1741-SA, UL 1998
		MIL-STD-810G
	FCC Part	15 Class A
d with		2, DIN EN ISO 9001
		_, _,
er decreases in the same proportion		a values for CAAA AAV 1
or decreases in the same propertion	 Values apply only to inverters. Permissib SMA can be found in the corresponding 	
	shall can be tound in the corresponding	adia sheets.
er supply		
	9) A short-circuit ratio of < 2 requires a spe	
er supply	9) A short-circuit ratio of < 2 requires a spe10) Depending on the DC voltage	cial approval from SMA
er supply	9) A short-circuit ratio of < 2 requires a spe	cial approval from SMA ge of 1050 V

Westwood Professional Services, Inc.

PREPARED FOR:

FREE STATE **SOLAR LLC.**

PREPARED FOR PROJECT NUMBER: 09100007

RE	VISIONS:			
#	DATE	COMMENT	BY	CHK APR
A	05/22/23	ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
В	06/16/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME
С	07/13/23	RE-ISSUED FOR 30% DESIGN REVIEW	GH	WMEWME

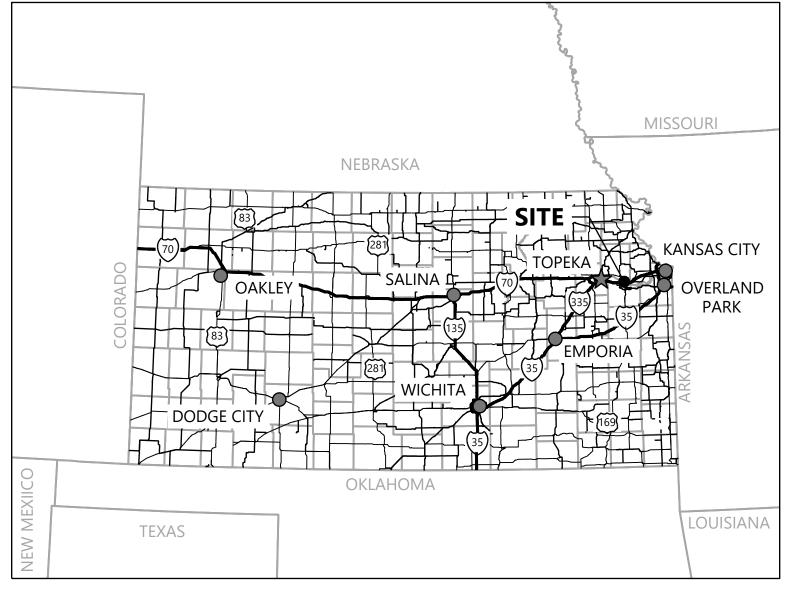
Kansas Sky **Energy Center**

Douglas County, Kansas

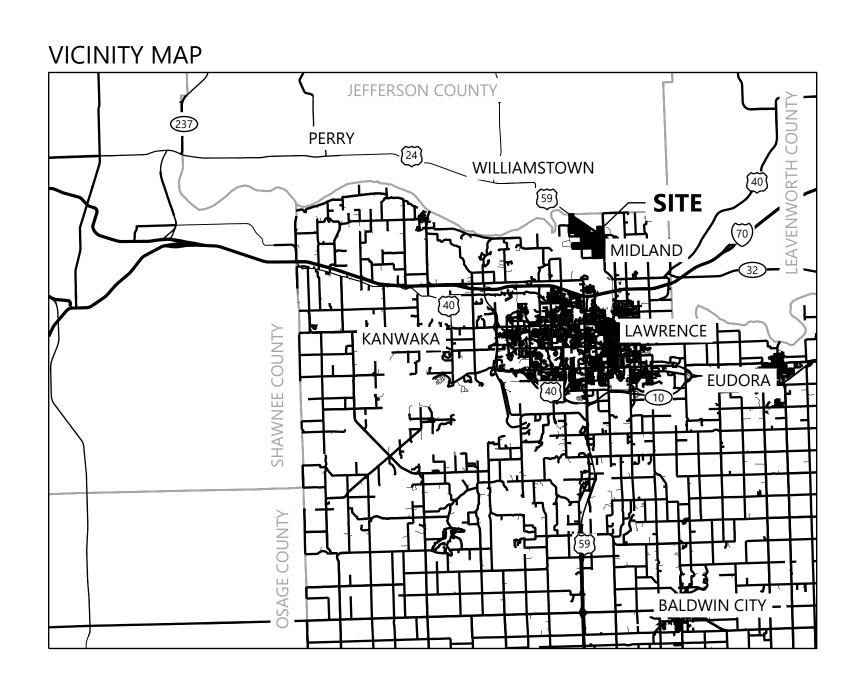
Inverter Specifications

NOT FOR CONSTRUCTION

DATE:


07/13/2023

SHEET:



Kansas Sky Energy Center Douglas County, Kansas Project Number: 09100007 **Substation Physical Electrical Plans**

REGIONAL MAP

Sheet List Table				
Sheet Number	Sheet Title	Revision Number	Revision Date	
EP001	Cover Sheet	С	08/11/2023	
EP100	General Arrangement Plan	С	08/11/2023	
EP800	Major Equipment List	С	08/11/2023	

CONTACT INFORMATION					
PROJECT ROLE	COMPANY	NAME	PHONE		
OWNER	FREE STATE SOLAR PROJECT, LLC	BRIANNA BACA	(531) 203-0181		
DEVELOPER	FREE STATE SOLAR PROJECT, LLC	BRIANNA BACA	(531) 203-0181		
PROJECT MANAGER	WESTWOOD PROFESSIONAL SERVICES	LEVI MITCHELL	(608) 821-6602		
PROJECT ENGINEER	WESTWOOD PROFESSIONAL SERVICES	JASON HOOKER	(984) 202-7498		
P&C ENGINEER	WESTWOOD PROFESSIONAL SERVICES	ERIC DIETEL	(210) 265-8300		
PHYSICAL ENGINEER	WESTWOOD PROFESSIONAL SERVICES	JESSE HENDRIX	(608) 821-3619		

Know what's below. Call before you dig.

Middleton, WI 5356

lestwood Professional Services

FREE STATE SOLAR PROJECT, LLC.

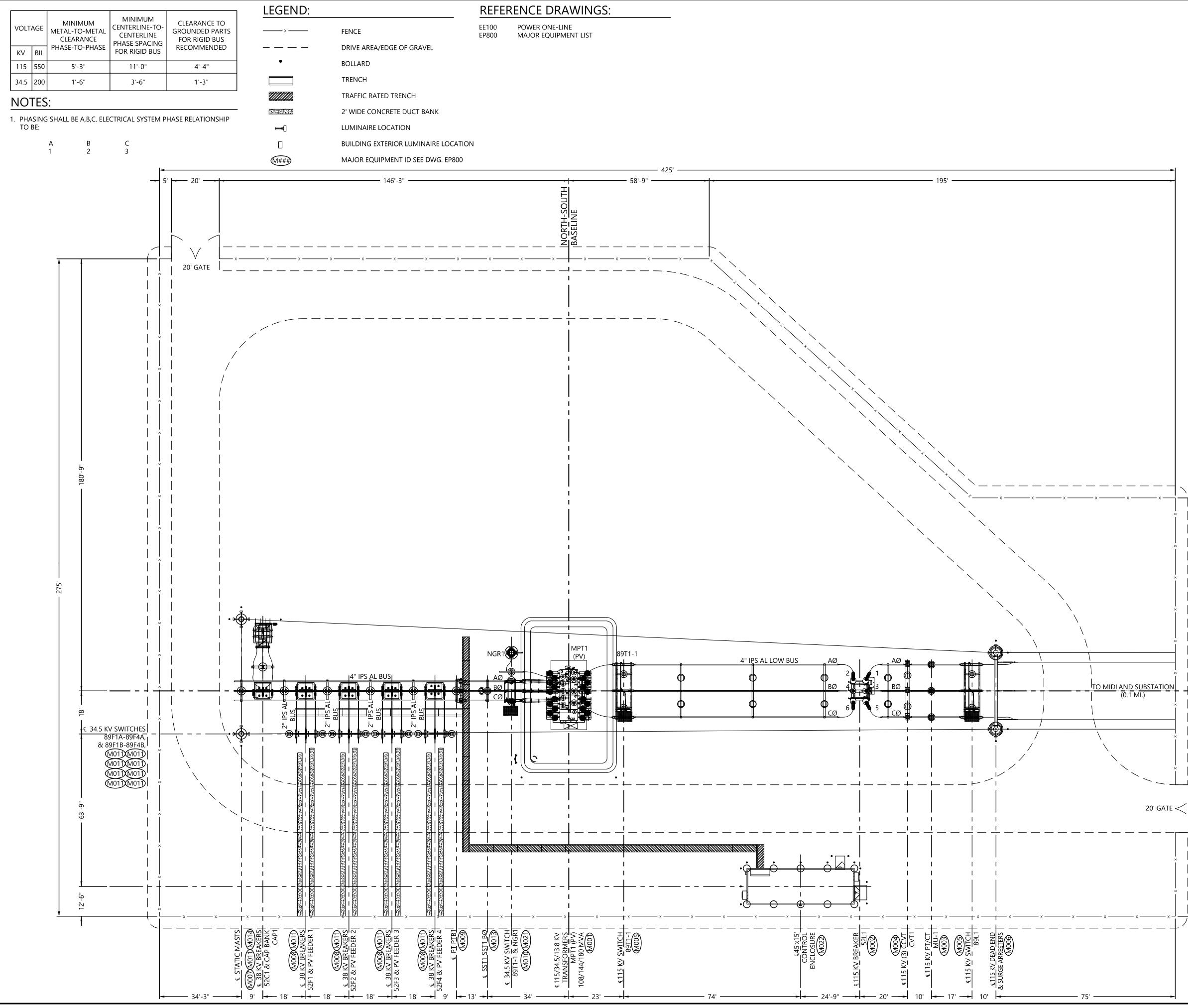
422 Admiral Blvd Kansas City, MO 64106

REVISIONS:					
#	DATE	COMMENT	BY	СНК	APR
А	04/28/2023	10% SUBMITTAL - ISSUED FOR REVIEW	BWD	JMH	JLM
В	05/19/2023	10% SUBMITTAL - ISSUED FOR REVIEW	BWD	JMH	JLM
С	08/11/2023	10% SUBMITTAL - ISSUED FOR PERMIT	BWD	JMH	JLM

Kansas Sky **Energy Center**

Douglas County, Kansas

Cover Sheet


NOT FOR CONSTRUCTION

DATE:

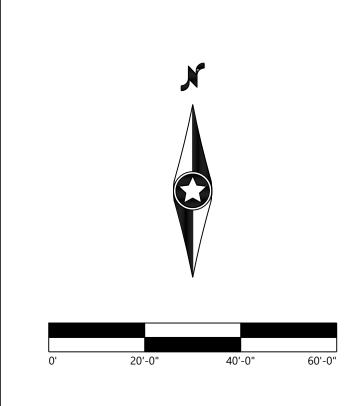
08/11/2023

SHEET

EP001

Westwood Phone (608) 821-6600 8401 Greenway Blvd., Suite 400 Middleton, WI 53562

westwoodps.com


Westwood Professional Services, Inc.

PREPARED FOR:

FREE STATE SOLAR PROJECT, LLC.

422 Admiral Blvd, Kansas City, MO 64106

REVISIONS:					
#	DATE	COMMENT	BY	СНК	APR
А	04/28/2023	10% SUBMITTAL - ISSUED FOR REVIEW	BWD	JMH	JLM
В	05/19/2023	10% SUBMITTAL - ISSUED FOR REVIEW	BWD	JMH	JLM
С	08/11/2023	10% SUBMITTAL - ISSUED FOR PERMIT	BWD	JMH	JLM

Kansas Sky **Energy Center**

WEST-EAST BASELINE

Douglas County, Kansas

General Arrangement Plan

NOT FOR CONSTRUCTION

DATE:

08/11/2023

SHEET:

REV: EP100 С

ITEM	оту.	DESCRIPTION	PART NO.
M001	1	POWER TRANSFORMER, 115/34.5/13.8KV, 108/144/180MVA, 550/115KV BIL, Z: 6.5% @ 108MVA WITH SURGE ARRESTERS, 76KV MCOV, STATION CLASS POLYMER TYPE NEMA 4-HOLE CONNECTION, UPRIGHT MOUNTING ON TRANSFORMER	
M002	1	CIRCUIT BREAKER, 115KV, 2000A	
M003	3	COMBINED INSTRUMENT TRANSFORMER, 115KV, EXTENDED RATIO 0.15B1.8, 1000:5, SR; RF2.0, 0.3W,M,X,Y,Z	
M004	3	115KV CAPACITIVE COUPLING VOLTAGE TRANSFORMER (CCVT) 600/1000:1 & 69KV/115KV GRDY, 0.3W,M,X,Y,Z	
M005	2	MOTOR OPERATED DISCONNECT SWITCH, 115KV, 2000A, 115KV BIL, DOUBLE END BREAK, CENTER PIVOT, HORIZONTALLY MOUNTED, THREE PHASE UNIT	
M006	3	SURGE ARRESTER, 76KV, MCOV, STATION CLASS, CLAMP CONNECTION, UNDERHUNG MOUNTING	
M007	1	CIRCUIT BREAKER, 38KV, 115KV BIL, 1200A, 25KA, VACUUM TYPE	
M008	4	CIRCUIT BREAKER, 38KV, 115KV BIL, 1200A, 25KA, VACUUM TYPE WITH INTERLOCKING GROUND SWITCH	
M009	3	POTENTIAL TRANSFORMER, 38KV, 115KV BIL, SINGLE BUSHING, 20125/34500: 115/67.08V, 175/300:1, 0.3W,X,M,Y	
M010	1	GOAB DISCONNECT SWITCH, HAND OPERATED, 34.5KV, 115KV BIL, VERTICAL BREAK, THREE PHASE UNIT	
M011	39	DISCONNECT SWITCH, 34.5KV, 115KV BIL, 1200A, VERTICAL MOUNT HOOKSTICK, SINGLE PHASE, TYPE V	
M012	30	SURGE ARRESTER, 24.4 KV MCOV, POLYMER TYPE NEMA 4-HOLE CONNECTION, CANTILEVER MOUNTING, UPRIGHT (FEEDERS AND POWER TRANSFORMER)	
M013	1	STATION SERVICE TRANSFORMER, 100KVA, 115KV BIL, POLE-MOUNT, SINGLE PHASE	
M014	1	CAPACITOR BANK, THREE PHASE, 38KV, 115KV BIL, 10MVAR WITH GROUND SWITCH, PT, 20125-115/67.08V, RATIO:175/300:1, 24.4 KV MCOV SURGE ARRESTER	
M015	1	CAPACITOR SWITCHER, 38KV, 115KV BIL, 40KA WITHSTAND & MAKING CURRENT	
M016	1	CURRENT LIMITING FUSE HOLDER	
M017	1	FUSE DISCONNECT MOUNTING, 38KV, 115KV BIL, STATION VERTICAL DISCONNECT, SMD-5 TYPE	
M018	1	FUSE UNIT, 34.5KV NOMINAL, 7E	
M019	15	115KV INSULATOR, STANDARD STRENGTH, 5" B.C. TOP & 5" B.C. BOTTOM, TR288	
M020	45	38KV INSULATOR, STANDARD STRENGTH, 3" B.C., TR210	
M021	1	NEUTRAL GROUNDING REACTOR, DRY-TYPE AIR CORE, 38KV SYSTEM, 115KV BIL, 1.0 OHM WITH SURGE ARRESTER, 24.4KV MCOV, STATION CLASS POLYMER TYPE NEMA 4-HOLE CONNECTION, UPRIGHT MOUNTING	
M022	1	CONTROL ENCLOSURE W/ PREWIRED PROTECTION PANELS AND AUXILIARY EQUIPMENT IN A PREFABRICATED ENCLOSURE, 45'-0" x 15'-0"	

REFERENCE DRAWINGS:

EE100 EP100

POWER ONE-LINE GENERAL ARRANGEMENT PLAN

NOTES:

Westwood Phone (608) 821-6600 8401 Greenway Blvd., Suite 400 Middleton, WI 53562 westwoodps.com

Westwood Professional Services, Inc.

PREPARED FOR:

FREE STATE SOLAR PROJECT, LLC.

422 Admiral Blvd, Kansas City, MO 64106

REVISIONS:							
# DATE	COMMENT	BY	СНК	APR			
A 04/28/2023	10% SUBMITTAL - ISSUED FOR REVIEW	BWD	JMH	JLM			
B 05/19/2023	10% SUBMITTAL - ISSUED FOR REVIEW	BWD	JMH	JLM			
C 08/11/2023	10% SUBMITTAL - ISSUED FOR PERMIT	BWD	ЈМН	JLM			

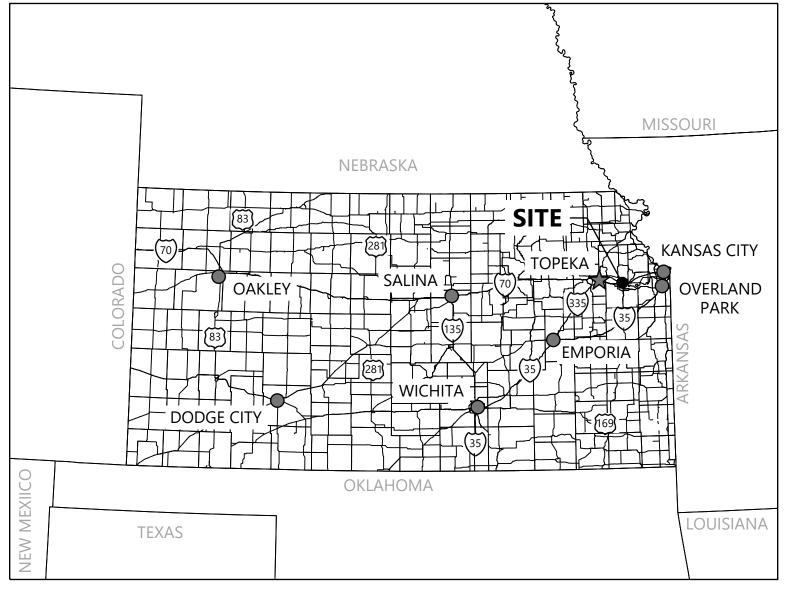
Kansas Sky Energy Center Douglas County, Kansas

Major Equipment List

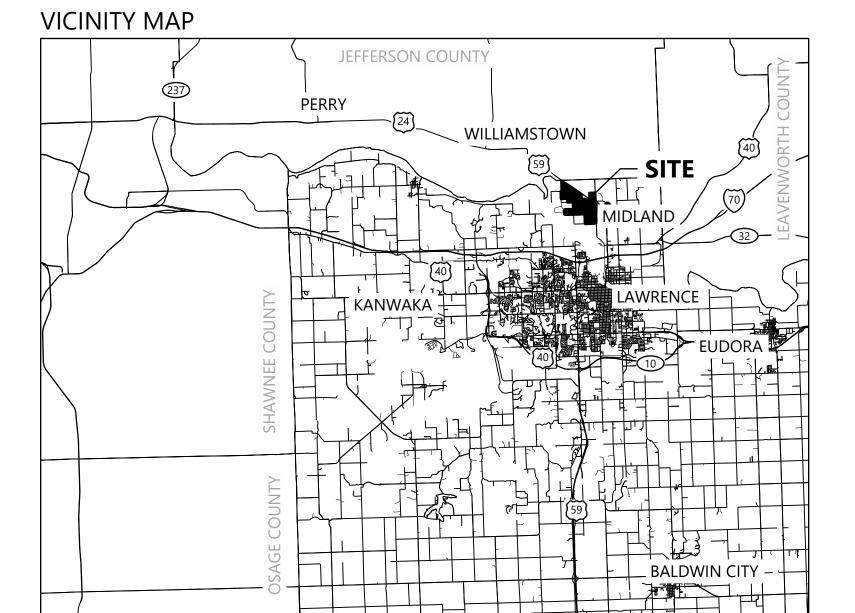
1. CAPACITOR AND REACTOR BANKS SHALL BE FURNISHED COMPLETE WITH SURGE ARRESTERS AND VENDOR SUPPLIED MOUNTING HARDWARE.

2. THE EQUIPMENT LIST SHOWN ON THIS DRAWING REFLECTS THE MAJOR SUBSTATION EQUIPMENT ONLY. CONTRACTOR SHALL SUPPLY ALL NECESSARY PARTS AND ACCESSORIES REQUIRED TO CONSTRUCT THE COMPLETED DESIGN AS CONCEPTUALIZED IN THE PACKAGE. ALL EQUIPMENT SHALL COMPLY WITH THE DESIGN AND CONSTRUCTION SPECIFICATIONS.

NOT FOR CONSTRUCTION


DATE:

08/11/2023 EP800


REV: С

Kansas Sky Energy Center Douglas County, Kansas Project Number: 09100007 **Substation Protection and Controls Plans**

REGIONAL MAP

	P&C DRAWING	LIJI	
SHEET NUMBER	SHEET TABLE	SHEET REVISION	SHEET DATE
EE001	Cover Sheet	С	08/11/2023
EE003	Legend	С	08/11/2023
EE100	Power One-line	С	08/11/2023
EE101	Relay One-line	С	08/11/2023
EE102	(FUTURE USE)		
EE103	Relay One-line	С	08/11/2023
EE104	Relay One-line	С	08/11/2023

CONTACT INFORMATION								
PROJECT ROLE	COMPANY	NAME	PHONE					
OWNER	FREE STATE SOLAR PROJECT, LLC	BRIANNA BACA	(531) 203-0181					
DEVELOPER	FREE STATE SOLAR PROJECT, LLC	BRIANNA BACA	(531) 203-0181					
PROJECT MANAGER	WESTWOOD PROFESSIONAL SERVICES	LEVI MITCHELL	(608) 821-6602					
PROJECT ENGINEER	WESTWOOD PROFESSIONAL SERVICES	JASON HOOKER	(984) 202-7498					
P&C ENGINEER	WESTWOOD PROFESSIONAL SERVICES	ERIC DIETEL	(210) 265-8300					
PHYSICAL ENGINEER	WESTWOOD PROFESSIONAL SERVICES	JESSE HENDRIX	(608) 821-3619					

Know what's below. Call before you dig.

lestwood Professional Services 1

Middleton, WI 5356

FREE STATE SOLAR PROJECT, LLC.

422 Admiral Blvd Kansas City, MO 64106

COMMENT	ΒY	СНК	APR
10% SUBMITTAL - ISSUED FOR REVIEW	WJF	ELD	JLM
10% SUBMITTAL - ISSUED FOR REVIEW	WJF	ELD	JLM
10% SUBMITTAL - ISSUED FOR PERMIT	WJF	ELD	JMH
	10% SUBMITTAL - ISSUED FOR REVIEW 10% SUBMITTAL - ISSUED FOR REVIEW	10% SUBMITTAL - ISSUED FOR REVIEWWJF10% SUBMITTAL - ISSUED FOR REVIEWWJF	COMMENTBYCHK10% SUBMITTAL - ISSUED FOR REVIEWWJFELD10% SUBMITTAL - ISSUED FOR PERMITWJFELD

Kansas Sky **Energy Center**

Douglas County, Kansas

Cover Sheet

NOT FOR CONSTRUCTION

DATE:

08/11/2023

EE001

	ONE LINE & THREE LIN	NE DIAGRA	M SYMBOLS		SCHEM	ATIC DIA	GRAM SYM	BOLS	WI	RING DI	AGRAM	DETAILS		ANSI CODES AND	ABBREV	IATIONS
	HIGH VOLTAGE BUS		GROUP OPERATED AIR				xx _o xx _o		г (CABLE NUMBER			CODE/ ABREV	DESCRIPTIONS	CODE/ ABREV	DESCRIPTIONS
	CT CIRCUIT		DISCONNECT SWITCH (VERTICAL OR SIDE BREAK)		CONTROL C	IRCUIT		ELECTRICAL DEVICE				FERENCE NUMBER. ABLE COLOR CODE.	2	TIME-DELAY CLOSING RELAY	94	AUXILIARY TRIPPING RELAY
			DOUBLE END BREAK SWITCH	x			xx° xx°			1 2			12	OVERSPEED DEVICE SYNCHRONOUS-SPEED	101	SUPERVISORY CONTROL
	PT/CT CIRCUIT	—` Q		₹ <u>43LR</u>	DOUBLE TH	ROW SWITCH	Х _Q			DESTINATION			13	UNDERSPEED DEVICE	а	WHEN DEVICE IS DE-ENERGIZED)
	CONTROL CIRCUIT		GROUP OPERATED AIR DISCONNECT SWITCH				Ś	VOLTAGE COIL		E1 CAB	BLE DETAIL		14 21	DISTANCE RELAY	b	CLOSED CONTACT (CLOSED WHEN DEVICE IS
		<i>.</i>	(VERTICAL OR SIDE BREAK) GROUP OPERATED				x			-) CAL	N.T.S		23	TEMPERATURE CONTROLLED		DE-ENERGIZED)
	AUTOMATIC TRANSFER SWITCH		AIR DISCONNECT SWITCH (CENTER BREAK)			OUT	1 ₀ 1 ₀					OCATION ON	25	DEVICE SYNCHRONOUS-CHECK	AM AS	AMMETER AMPERE SWITCH
۲	EQUIPMENT BUSHING	Q	HOOK OPERATED FUSED	X _o X _o		-		TEMPERATURE CONTROLLED SWITCH	PANEL N			NEL SIDE. LEFT (L) R RIGHT (R)	26	RELAY THERMAL DEVICE	BF	BREAKER FAILURE
((] 	CAPACITOR BANK	\	DISCONNECT SWITCH		NORMALLY CONTACT	OPEN/CLOSE	X		LABEL AT TOF TERMINAL BLO			ΥY	27	UNDERVOLTAGE RELAY	BFI	BREAKER FAILURE INITIATE
-	FUSED CAPACITOR BANK		FUSED DISCONNECT SWITCH				$\sqrt{\frac{XTSX}{X}}$	POTENTIAL TEST SWITCH	ON REAR OF PA	2	XXX XX-X		30	ANNUNCIATOR	СС	CLOSE COIL
Х.ХКV	POWER CIRCUIT BREAKER	-		(CAPACITOR		X		TERMINAL BLO NUMBER. LABE	OCK		POINT ON DEVICE. PLACE ON WIRE	32	DIRECTIONAL POWER RELAY	CS	
	W/ QUICK GROUNDING SWITCH (OUTDOOR)		SWITCH WITH VACUUM INTERRUPTER	1 <u>1FU</u>	1 LOW VOLTA	GE FUSE	$\frac{x}{x} \frac{xTSX}{x}$	CURRENT SHORTING	ON TERMI BLOCK ON	THE		LABEL DEVICE REFERENCE.	40	FIELD RELAY SELECTOR SWITCH OR RELAY	DPM	DIGITAL PANEL METER DISPLAY TRANSDUCER
X.XKV XA	POWER CIRCUIT BREAKER	. >	SWITCH WITH ARCING HORNS	2			x x	TEST SWITCH	REAR OF PA	NEL		PLACE ON WIRE LABEL.	45	PHASE-BALANCE CURRENT	DTA	ADAPTER
	(OUTDOOR)						x	CURRENT SHORTING				INCTION OF CIRCUIT. IALL BE PLACED ON		RELAY PHASE-SEQUENCE VOLTAGE	DTR DTS	DIRECT TRIP RECEIVE
ر×ـــ		-	SWITCH WITH FUSE		SOLIDLY GR	UUNDED	$\frac{1}{x}$ $\frac{x TSX}{x}$	TEST SWITCH (WITH TEST PLUG PROVISIONS)			W	IRE LABEL, NOT ON RMINAL BLOCK	47	INCOMPLETE SEQUENCE	EC	ELECTRONIC CONTROL
	CAPACITIVE VOLTAGE TRANSFORMER (DUAL SECONDARY)	<.			HEATER				NOTE: SEE	DETAIL E3 BELO	W FOR CREATIO	N OF WIRE LABELS	48	RELAY	FU	FUSE
		!·	GROUND SWITCH				° _{XX-X}	TERMINAL POINT ON DEVICE	E2		L BLOCK D	ETAIL	49	THERMAL RELAY INSTANTANEOUS	GFI	GROUND FAULT INTERRUPTER
X			GROUP OPERATED SWITCH WITH	xxx	INDICATING	LIGHT	□ _{xx-x}	TERMINAL BLOCK ON		/	N.T.S		50	OVERCURRENT RELAY	НВІ	HOT BUS INDICATION
→ Y_	VOLTAGE TRANSFORMER (DUAL SECONDARY)	o ^	INTEGRAL GROUND POSITION	xxx ^o		A=AMBER	[–] XX-X	RELAY PANEL		(X)	X) XX-XXX		51	TIME OVERCURRENT RELAY	HLI	
		_•	QUICK BREAK SWITCH				⊠ _{XX-X}	TERMINAL BLOCK ON FIEL TERMINATION CABINET	D	1			53	EXCITER OR DC GENERATOR	LCS LR	LATCH CHECK SWITCH
xxxx:x ──ि── ─ ──	BUSHING CURRENT TRANSFORMER (MR/SR)	\ ~	CURRENT SHORTING TEST SWITCH	XA	THERMAL-N							POINT ON DEVICE	55	RELAY POWER FACTOR RELAY	LS	LOCAL-SUPERVISORY
XXXX:X		\times			CIRCUIT BRE		Ø _{XX-X}	TERMINAL BLOCK ON REMOTE EQUIPMENT		CIRCUIT.		(ICE ERENCE	56	FIELD APPLICATION RELAY	М	METER
	NON-BUSHING CURRENT TRANSFORMER (MR/SR)		POTENTIAL OR CONTROL TEST SWITCH	1 ₀₁ 1 _q							LABEL DET	AIL	59	OVERVOLTAGE RELAY	OC	OC OPEN CONTACTOR
\triangle	PHASOR REPRESENTATION (DELTA)		POWER LINE CARRIER WAVE TRAP	20 20	PUSHBUTTC	N SWITCH		DRAWOUT TYPE		-	N.T.S		60	VOLTAGE OR CURRENT BALANCE RELAY	PF	
	PHASOR REPRESENTATION (GROUNDED DELTA)	$\ll \gg$	POWER CIRCUIT BREAKER				∘ ≯⊷ ∘ ≯⊷	DIODE					62	TIME DELAY OPENING RELAY	PTR PTS	PERMISSIVE TRIP RECEIVE PERMISSIVE TRIP SEND
T T	PHASOR REPRESENTATION (WYE) PHASOR REPRESENTATION (GROUNDED WYE)		(DRAWOUT)	1_{0} 1_{0} $D_{}$	PRESSURE C SWITCH	ONTROLLED	÷ GRD2		WIRING DIAGR	AM NOTES			63	PRESSURE SWITCH	RC	RECLOSER CONTROL
XXMCOV	· · · · · ·		POWER CIRCUIT INTERRUPTER	2 ^d 2 ^d	SWIICH				2. * DENOT	TES # 10 AWG W	IRE.	FOR PORT CONNECTIONS.	64	GROUND DETECTOR RELAY	RCV	RECORDING VOLTMETER
	SURGE ARRESTER		(WITH BLADE DISCONNECT)	L L	(Y		GFI	DUPLEX OUTLET		tes # 16 Awg v D Above for Ae		NG DETAILS.	67	RELAY	RVM	REVENUE METER
XA 🗖	FUSE		POWER CIRCUIT INTERRUPTER	j j	X REACTOR C	DIL							68	BLOCKING DEVICE PERMISSIVE CONTROL	SCDA TC	SCADA CONTROL TRIP COIL
	CENEDATOR	ωω	POWER TRANSFORMER				ХХФ						71	DEVICE LIQUID LEVEL DEVICE	TS	TEST SWITCH
\bigcup	GENERATOR	m			- RESISTOR C	DIL	Ť Ť	FORM C CONTACT					74	ALARM DEVICE	VS	VOLTAGE SWITCH
Ŧ	SOLIDLY GROUNDED	ο m	POWER TRANSFORMER (WITH LOAD TAP CHANGER)				ххү үхх						77	PULSE TRANSMITTER	VM	VOLTMETER
\frown				x _و		CARL			-r				78	OUT-OF-STEP RELAY	XD	TRANSDUCER
(M)	MOTOR OPERATOR	juni _	POWER TRANSFORMER W/		CURRENT C	OIL CARL		CONDUCTOR REFERENCE NUMBER. SEE CONTROL CABLE COLOR CODE.		GENER	AL SYM	BOLS	- 79		X	MAJOR EQUIPMENT BOM #
I			TERTIARY WINDING				xxxx-xx	1					81	FREQUENCY RELAY MOTOR MECHANISM		
А 1	UNDERGROUND POWER CABLE	\sim					<u>,</u>			\sim	DETAIL	t.	86	LOCKOUT RELAY		
			PT/CT LABELS					X XXX RATHOLE	DETAIL CA		Δ		87	DIFFERENTIAL RELAY		
	NEUTRAL (STAR POINT)	c -								\sim		G NUMBER AN BE	88	MOTOR		
-~~~-	RESISTOR										FOUND. I THEN DE	F DASH "-" TAIL IS ON	89	LINE SWITCH VOLTAGE REGULATING RELAY		Ka
	PEACTOP		A PHASE ROTATION								SAME DR	AWING	90	(LTC)		
	REACTOR	+		CONITI			EA METHOD 1)		R OPTIC COLOR CODI	F		ABLE NUMBERS	4			En
	RELAYS	B		CONDUCTOR	TABLE E-1	APPEN/ CT/P	PT AC	DC CONDUCT		BREV.	RANGE	CONTAINS	1			Doug
	P	PHASE SEQUENCE A-B-C		NO.		PHASI	NG PHASING PH	ASING NO.		F	1000-1999	AC CABLES	1			
$\begin{pmatrix} XX \\ \overline{XX} \end{pmatrix}$	PROTECTION /FUNCTION CONTROL DEVICE	_]	STATION SERVICE TRANSFORMER		BLACK	BK AØ W BØ		-VE 1 +VE 2	ORANGE	BU	2000-2999	DC CABLES]			•
		~ •		3	RED	R CØ			GREEN	G	3000-3999	PT CABLES	4			
₹IT	RELAY CT/PT INPUTS			4	GREEN	G RETUI	RN G	4		BR	4000-4999	CT CABLES	-			
		XA	DRAWOUT FUSE	5	ORANGE	0		5	SLATE	SL –	5000-6999 6000-6999	CONTROL CABLES	-			
R	VACUUM OR HYDRAULIC RECLOSER			6	BLUE	BU		6	WHITE			COMMUNICATION CABLES	-			
K	KIRK KEY INTERLOCK		TO X-X (DWG. XXXX) X MATCH LINE	7		WB			RED		7000-7999		-			
				8 9	RED BLACK	RB GB			BLACK YELLOW	BK Y						
					DRANGE BLACK	OB		10	VIOLET	VI						
				11	BLUE BLACK	BUB		11	ROSE	RO						
4						514							1			

BLACK WHITE

12

BW

AQUA

12

AQ

)NS

Westwood Professional Services, Inc.

PREPARED FOR:

FREE STATE SOLAR PROJECT, LLC.

422 Admiral Blvd, Kansas City, MO 64106

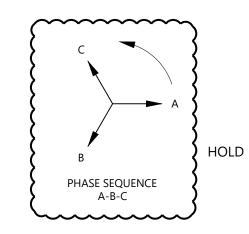
RE	REVISIONS:							
#	DATE	COMMENT	BY	СНК	APR			
A	04/28/2023	10% SUBMITTAL - ISSUED FOR REVIE	w WJF	ELD	JLM			
В	05/19/2023	10% SUBMITTAL - ISSUED FOR REVIE	w WJF	ELD	JLM			
С	08/11/2023	10% SUBMITTAL - ISSUED FOR PERM	IT WJF	ELD	ЈМН			
-	00, 11, 2020				5			

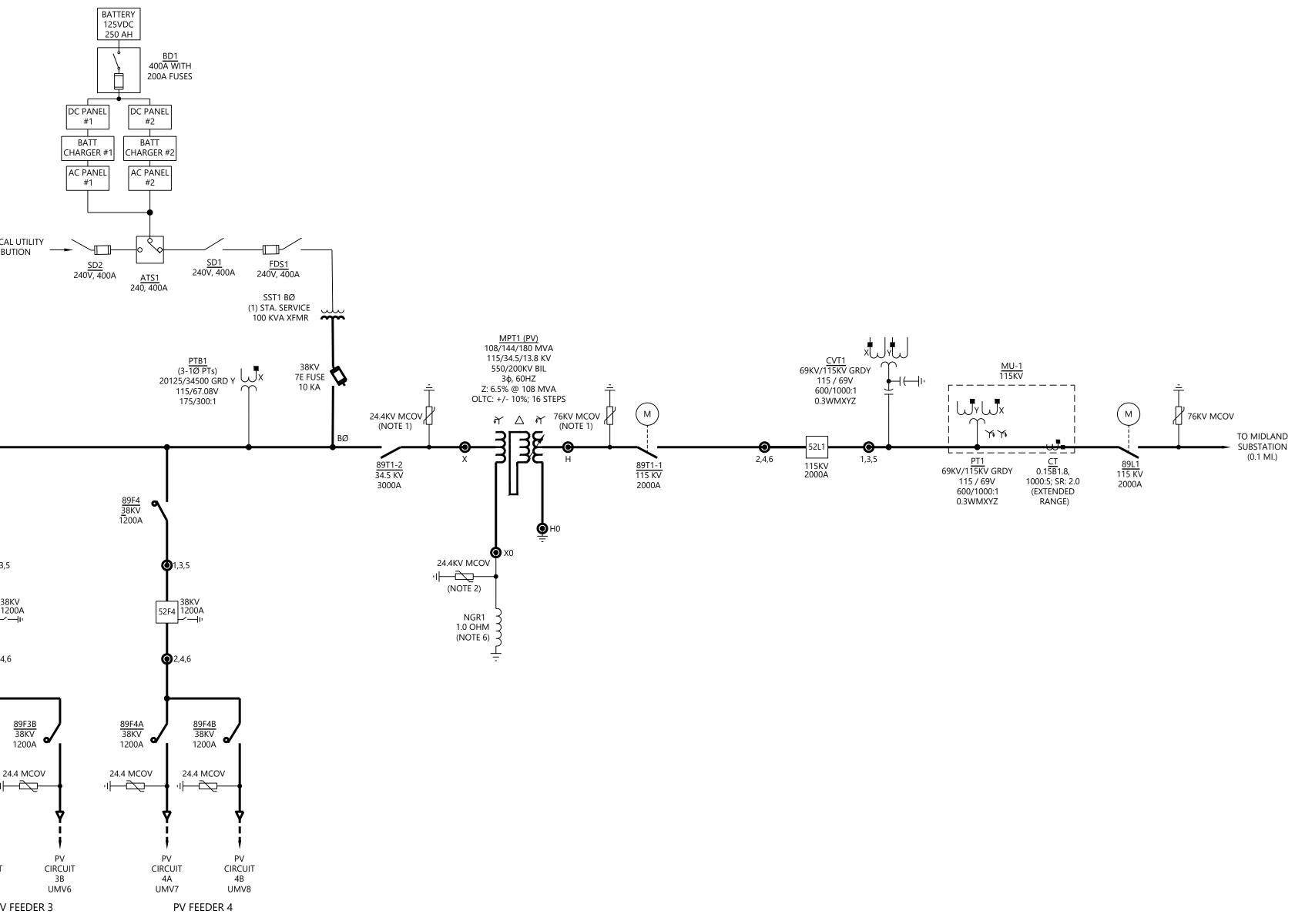
Kansas Sky Energy Center Douglas County, Kansas

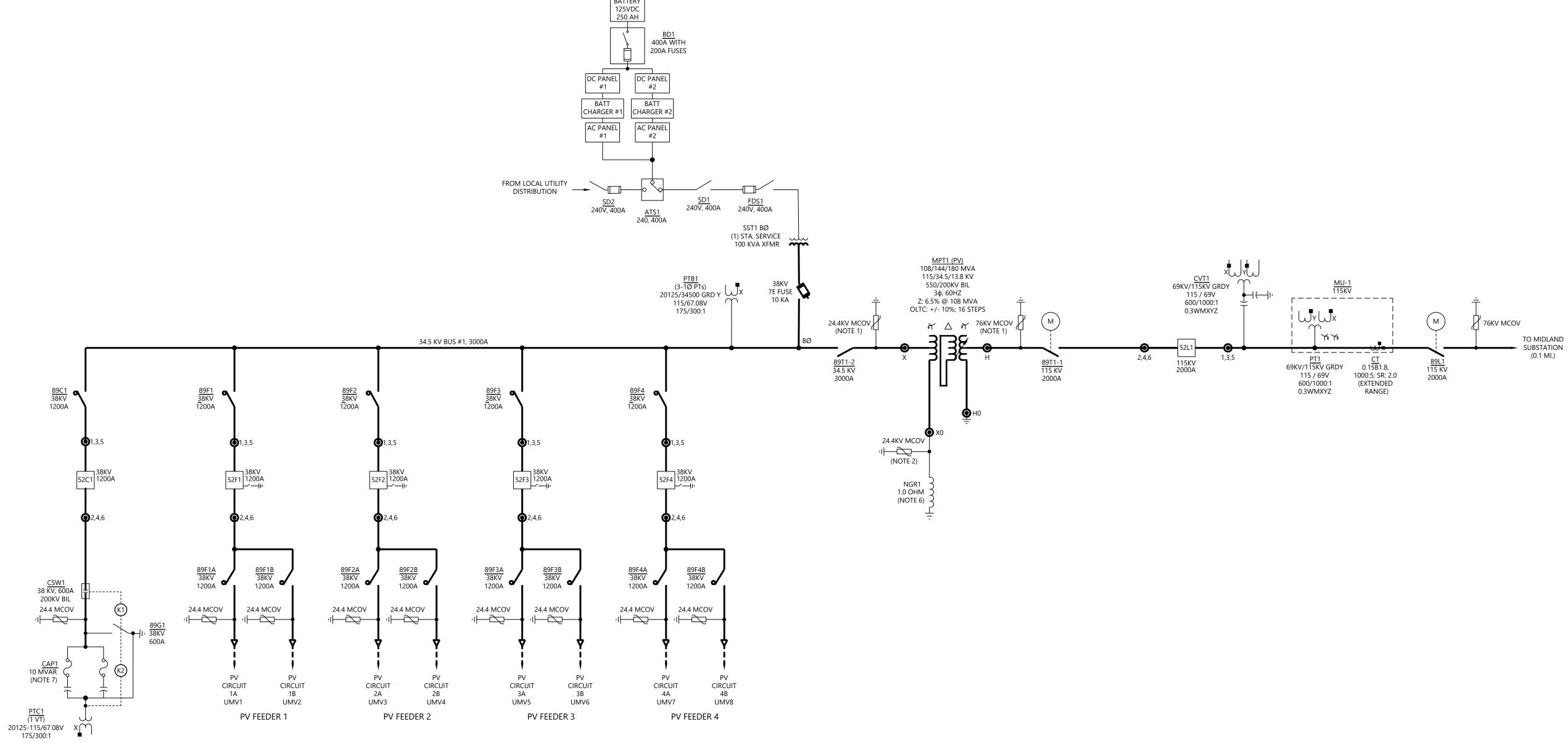
Legend

NOT FOR CONSTRUCTION

DATE:


08/11/2023


SHEET:


EE003

REV:

С

PROVIDED BY MPT VENDOR.
 PROVIDED BY NGR VENDOR.

3. EQUIPMENT RATINGS SHOWN ARE PRELIMINARY. 4. AC DISCONNECT SWITCHES ARE NO-LOAD DISCONNECTS UNLESS

OTHERWISE SPECIFIED. 5. SHUNT REACTIVE DEVICE TYPE, QUANTITY, AND STEP SIZE DETERMINED BASED ON THE RESULTS OF THE REACTIVE POWER STUDY.6. NGR SIZING WILL BE DETERMINED DURING DETAILED DESIGN. 7. CAP BANK SIZING SHOWN AS PRELIMINARY.

Middleton, WI 53562 westwoodps.com

Phone (608) 821-6600 8401 Greenway Blvd., Suite 400

Westwood Professional Services, Inc.

PREPARED FOR:

FREE STATE SOLAR PROJECT, LLC.

422 Admiral Blvd, Kansas City, MO 64106

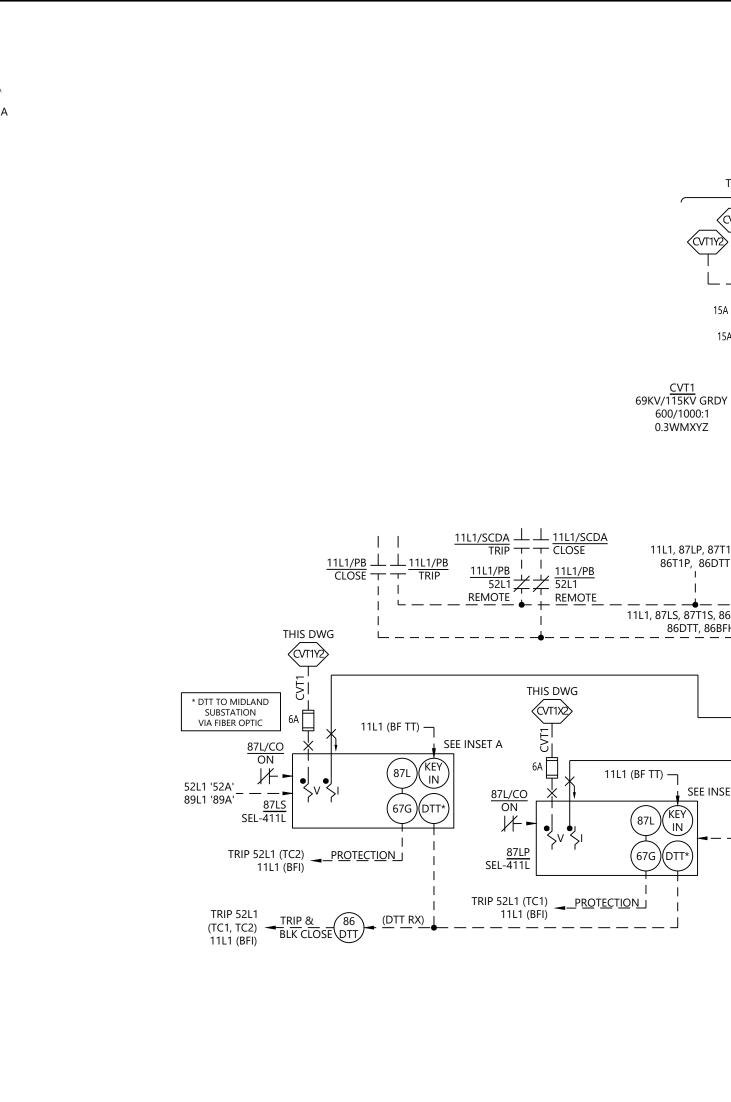
REVISIONS:							
# DATE	COMMENT	BY	СНК	APR			
A 04/28/2023	10% SUBMITTAL - ISSUED FOR REVIEW	WJF	ELD	JLM			
B 05/19/2023	10% SUBMITTAL - ISSUED FOR REVIEW	WJF	ELD	JLM			
C 08/11/2023	10% SUBMITTAL - ISSUED FOR PERMIT	WJF	ELD	ЈМН			

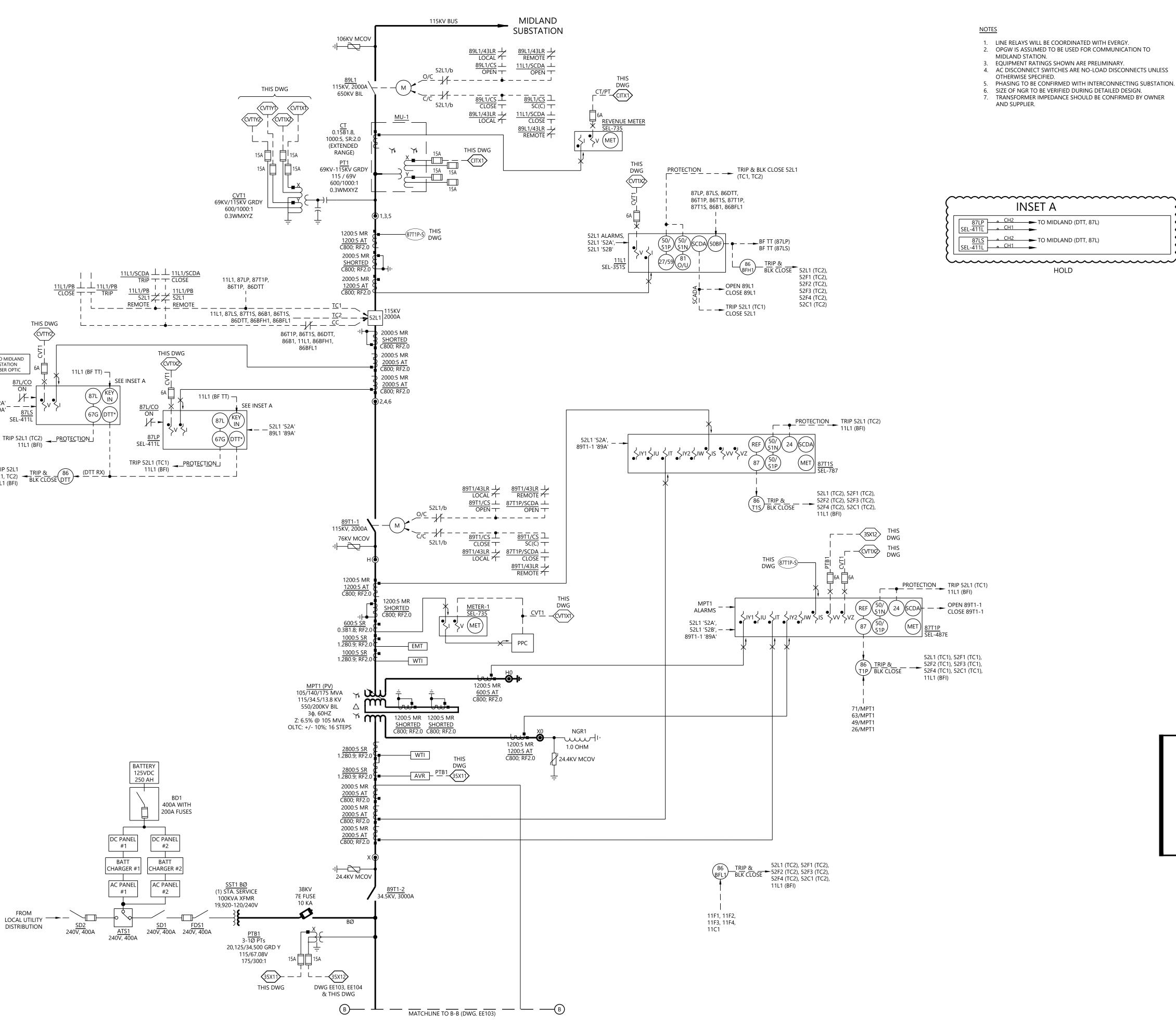
Kansas Sky **Energy Center**

Douglas County, Kansas

Power One-line

NOT FOR CONSTRUCTION


DATE:


08/11/2023

SHEET:

EE100

PHASE SEQUENCE

A-B-C

SEE NOTE 5

NOTES

- LINE RELAYS WILL BE COORDINATED WITH EVERGY.
 OPGW IS ASSUMED TO BE USED FOR COMMUNICATION TO
- MIDLAND STATION. 3. EQUIPMENT RATINGS SHOWN ARE PRELIMINARY.
- 4. AC DISCONNECT SWITCHES ARE NO-LOAD DISCONNECTS UNLESS OTHERWISE SPECIFIED.
- PHASING TO BE CONFIRMED WITH INTERCONNECTING SUBSTATION.
- SIZE OF NGR TO BE VERIFIED DURING DETAILED DESIGN. TRANSFORMER IMPEDANCE SHOULD BE CONFIRMED BY OWNER AND SUPPLIER.

Westw

Middleton, WI 53562

westwoodps.com

(608) 821-6600 8401 Greenway Blvd., Suite 400 Phone

Westwood Professional Services, Inc.

PREPARED FOR:

FREE STATE SOLAR PROJECT, LLC.

422 Admiral Blvd, Kansas City, MO 64106

RE	VISIONS:				
#	DATE	COMMENT	ΒY	СНК	APR
Α	04/28/2023	10% SUBMITTAL - ISSUED FOR REVIEW	WJF	ELD	JLM
В	05/19/2023	10% SUBMITTAL - ISSUED FOR REVIEW	WJF	ELD	JLM
С	08/11/2023	10% SUBMITTAL - ISSUED FOR PERMIT	WJF	ELD	JMH

INSET A

87LP CH2 TO MIDLAND (DTT, 87L)
87LS <u>CH2</u> TO MIDLAND (DTT, 87L)

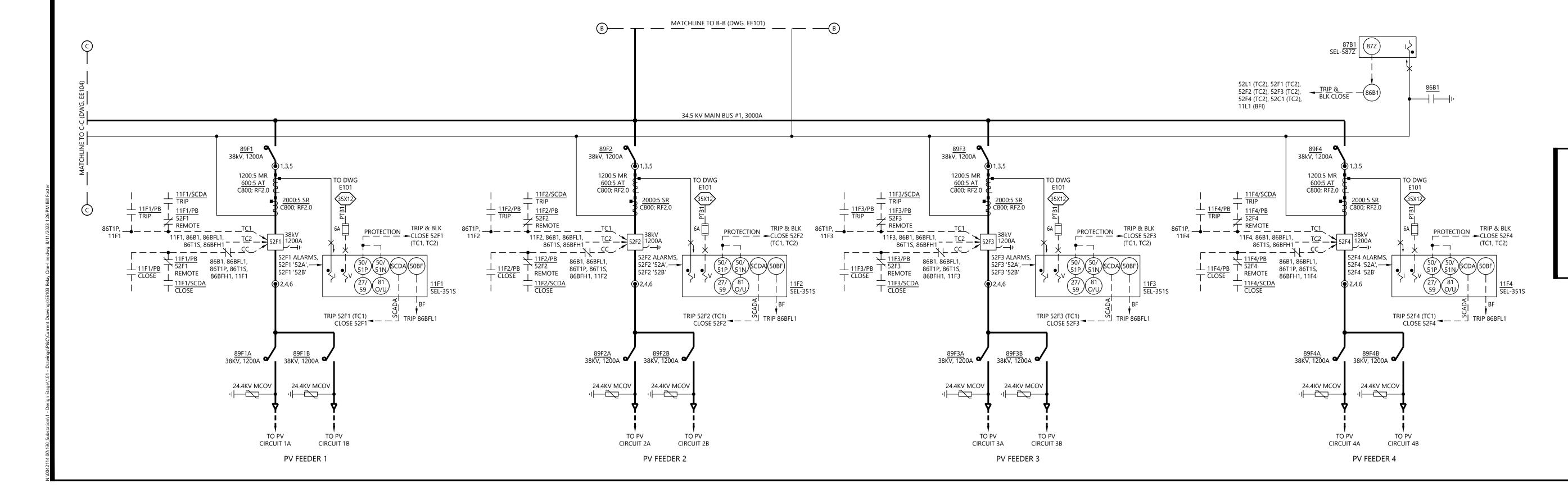
HOLD

Kansas Sky **Energy Center**

Douglas County, Kansas

Relay One-line

NOT FOR CONSTRUCTION


DATE:

08/11/2023

SHEET:

EE101

REV:

Westwood Professional Services, Inc.

PREPARED FOR:

FREE STATE SOLAR PROJECT, LLC.

422 Admiral Blvd, Kansas City, MO 64106

REV	/ISIONS:					
#	DATE	COMMENT		BY	СНК	APR
Α (04/28/2023	10% SUBMITTAL - ISSUE	D FOR REVIEW	WJF	ELD	JLM
ВC	05/19/2023	10% SUBMITTAL - ISSUE	D FOR REVIEW	WJF	ELD	JLM
СС	08/11/2023	10% SUBMITTAL - ISSUE	D FOR PERMIT	WJF	ELD	ЈМН

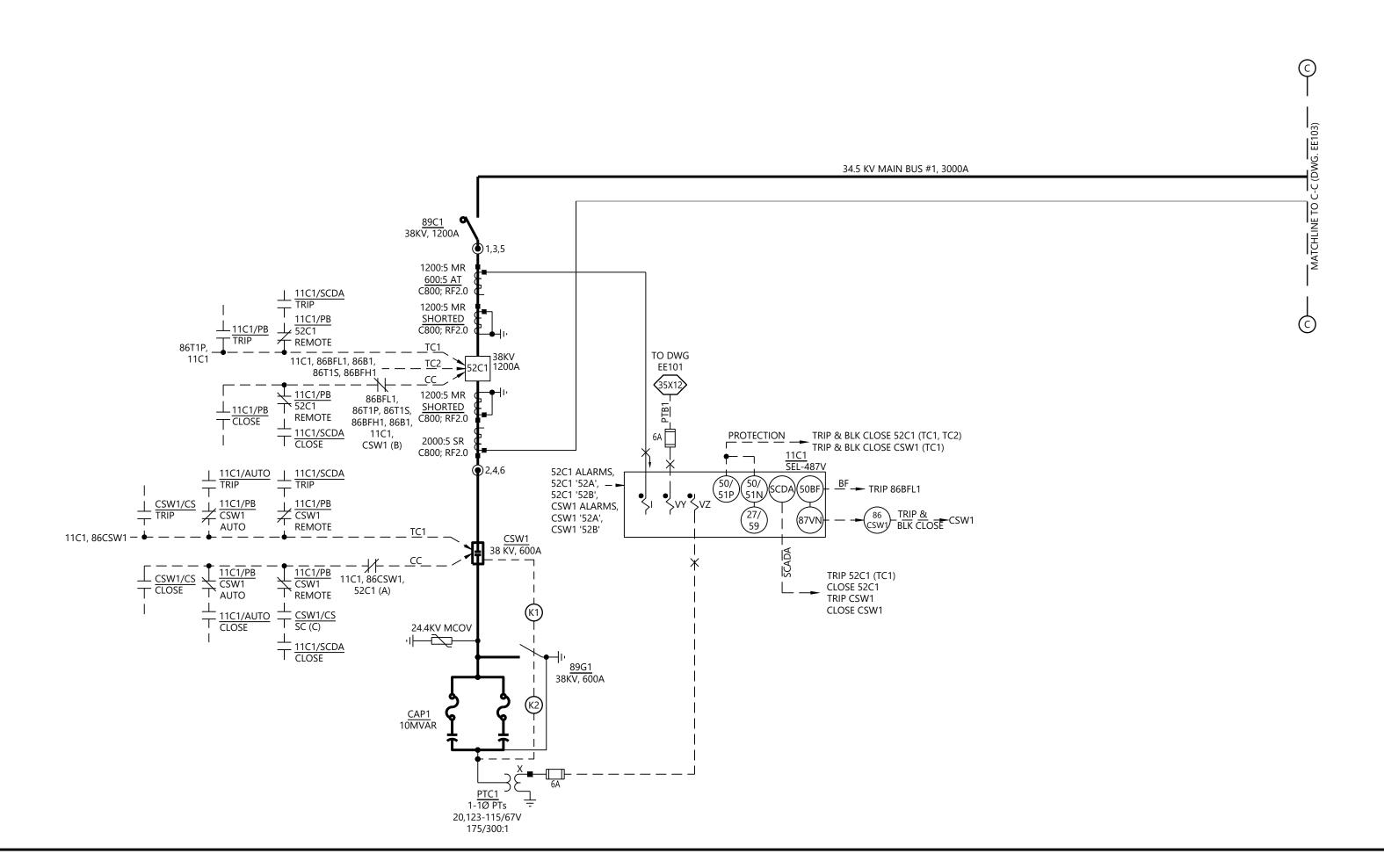
Kansas Sky Energy Center

Douglas County, Kansas

Relay One-line

NOT FOR CONSTRUCTION

DATE:


08/11/2023

SHEET:

EE103

REV:

Phone (608) 821-6600 8401 Greenway Blvd., Suite 400 Middleton, WI 53562 westwoodps.com

Westwood Professional Services, Inc.

PREPARED FOR:

FREE STATE SOLAR PROJECT, LLC.

422 Admiral Blvd, Kansas City, MO 64106

RE	VISIONS:				
#	DATE	COMMENT	BY	СНК	APR
A	04/28/2023	10% SUBMITTAL - ISSUED FOR REVIEW	WJF	ELD	JLM
В	05/19/2023	10% SUBMITTAL - ISSUED FOR REVIEW	WJF	ELD	JLM
С	08/11/2023	10% SUBMITTAL - ISSUED FOR PERMIT	WJF	ELD	JMH

Kansas Sky Energy Center

Douglas County, Kansas

Relay One-line

NOT FOR CONSTRUCTION

DATE:

08/11/2023

SHEET:

EE104

